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Chapter 1

Introduction

Spoken language, more than anything else, is what makes us human. It appears

that no other communication system in the animal kingdom can more precisely

shape events in each others’ brains than spoken language. It has played the

central role in propelling our immediate ancestors, hominids from east-African

ecological community to the most dominant species on the planet. Late British

neurologist Oliver Sacks broadly elucidates the importance of language in his

book Seeing Voices as -

And language, (...) is not just another faculty or skill, it is what makes

thought possible, what separates thought from nonthought, what separates

the human from the non human.

The evolution of spoken language is thus the most significant event in the his-

tory of life on earth. Unarguably, it is so pivotal to humanity that it permeates

all aspects of human cognition, behavior and culture, making it an avenue of

immense investigation for linguists, anthropologists, geneticists, evolutionary

biologists, computer scientists and neuroscientists.

The emergence of human languages however, is firmly tied to the evolution

of human speech which is the vocal medium to convey language. The evolu-
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Chapter 1. Introduction

tion of a complex vocal apparatus that could produce vocalizations adequate

to serve the linguistic needs of the modern man is, however, inconceivable

without a concurrent perceptual specialization machinery. Therefore, concep-

tualization of the aforementioned perceptual specialization machinery holds an

essential niche particularly in neuroscience known as ’neurobiology of speech

perception’. In addition to providing inferences on evolution, speech percep-

tion research has had paramount clinical, social, technological and cultural im-

plications. As we discuss in the subsequent sections, over the decades, the ex-

ploration of the neurobiology of speech perception has increasingly proven its

complexity and vital role in human cognition.

1.1 Speech as a multisensory phenomenon

Face-to-face conversation, video-conferencing and watching a television are

some of the activities that we perform routinely. Perception of speech in such

scenarios involves the participation of more than one sensory modality (pri-

marily vision and audition) wherein watching the speaker provides concurrent

visual cues. The fact that, we can communicate effectively without the visual

cue in specific scenarios (e.g. talking over a telephone), perhaps undermine

the significance of visual cues during speech perception. Nevertheless, the re-

search over the past few decades have incontrovertible evidences in support of

the conclusion that visual speech cues when accessible, supplement and mod-

ulate speech perception.

Visual cues from the lips of the speaker carry relevant linguistic information

that aid speech perception in noisy acoustic environment [126] and in deaf indi-

viduals (lipreading) [7]. Moreover, studies by Weikum and collegues [140] that

demonstrate infants as young as 4-6 months old can discriminate languages

from just viewing silently presented articulations, leads us to infer that sensi-

tivity to visual speech arises as a part of normal development rather than com-

2
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pensatory strategy to cope with deafness or noisy acoustic conditions. With ev-

idences pinpointing speech perception as a multisensory phenomena, theories

and scientific investigations were directed to address the question - how does

the visual source of information about speech get integrated with the auditory

speech.

1.1.1 Audio-visual (AV) integration of speech : Theories and

evidences

AV integration in infants

Unlike theories of speech perception in adults, two major school of thoughts ex-

ist that divide the research on the early development of AV speech perception.

The first is the integration framework that refers AV speech perception as ’cross-

modal ’ or ’intermodal’. This is to indicate that that two independently func-

tioning sensory systems need to act coherently for the perception to emerge.

Nevertheless, discrepancy within this approach exist as to whether the inte-

gration occurs through general principles of associative learning [140] or more

active hypothesis testing [60]. Contary to the integration framework is the dif-

ferentiation framework that refer early AV integration as amodal to indicate the

notion that senses are not seperate from birth and respond simultaneously [1]

to external input. In differentiation framework, experiences are also considered

to play a role in attuning our senses to integrate only the conforming inputs.

Support for the integration framework primarily come from the studies look-

ing, for example, at infants’ AV matching abilities. In a typical AV matching

paradigm, the infants are presented with side-by-side talking faces articulating

different utterances. These video are presented along with a centrally presented

speech sound that matches one of the utterances. Behavioral indication of the

AV matching is obtained when the infants spend longer duration looking at the

matching face than a the mismatching face. Following such paradigm, Dodd

3
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Figure 1.1: Experimental setup used
by Weikum et al., 2007 to test vi-
sual language discrimination in in-
fants aged 4–6 months. Two groups
of infants were habituated by pre-
senting a series of videoclips show-
ing faces silently articulating sen-
tences in French and English respec-
tively. Subsequently, the infants were
tested on their ability to discriminate
visual speech of the language they
were not habituated. Infants discrim-
inated English from French speech
just from viewing silent articulations

and others have show that infants as young as 2.5 -4 months are able to match

the affective content of faces and voices [33]. Such ability of infants AV match-

ing as young as 2 months of age has been attributed to the experience gathered

from substantial parent-child face-to face interactions wherein they learn to as-

sociate conforming inputs,

Evidences in support of the differentiation view come especially from the studies

that demonstrate that AV matching may also be possible without experience.

Aldridge and colleagues have shown that even neonates can match articula-

tory movements with the heard sound [4]. The most convincing evidence in

support of the differentiation comes from a recent study by Pons et al., wherein

they presented AV syllables /ba/ and /va/ to American and Spanish infants

for AV matching. Notably, the phonetic distinction of syllables /ba/ and /va/

are not contrastive in Spanish. Both American and Spanish infants at 4 months

succeeded whereas by 10 months only the American infants showed the ability

of matching the sound of /ba/ and /va/ to their respective visual speech [107].

These results suggests the existence of AV integration prior to specific experi-

ences with AV speech.

4



Chapter 1. Introduction

Combining the evidences accumulated over the years in support of the both

views, it is clear that neural systems supporting AV integration emerge very

early in life. Furthermore, one can infer that although capability of AV speech

perception exist from birth, experience also plays a prominent role in sharpen-

ing and attuning these capabilities.

AV integration in adults

Substantial amount of research has been pursued to characterize the mecha-

nisms of AV speech perception- the set of mental operations that facilitate the

integration of information from multiple sensory modalities. However, there

exists a theoretical divide among the researchers about the underlying pro-

cesses, and representation of the speech inputs and the output of the integra-

tive process. The three most influential models proposed till date and neuro-

scientific evidences in support of the respective models are discussed in turns.

Convergence views

The convergence theory that gained the maximum attention in the past few decades

was the ’motor theory of speech perception’ [81]. It proposes that speech inputs

are represented as specific speech gestures. In other words, the theory hypoth-

esizes that spoken words are perceived by the articulatory gestures rather than

identifying the sound patterns of the incoming speech. A major claim of the

theory is the participation of motor representations during speech perception.

Studies looking at motor evoked potentials (MEP) of the lip and tougue related

areas induced by transcranial magnetic stimulations (TMS) have shown mod-

ulation in the MEP during the perception of speech. However, the theory also

faces criticisms from the studies that have shown the intactness of the speech

perception abilities in patients with damages in the motor brain areas.
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Associationist views

The associationist view hypothesizes that the speech information undergo exten-

sive sensory processing in the respective sensory-specific cortices before being

integrated to elicit a percept. Also according to this view, multisensory speech

are represented in the incoming speech gestures, but instead in abstract features

stored as prototype in the memory. These prototypes are constantly assessed

during the coarse of integration. The fuzzy-logical model of perception (FLMP)

claims a niche in the associationist view of speech perception [89]. Although

the FLMP offers to explain a substantial amount of empirical data [35], it face

criticisms for its excessive impetus it confers to the memory. Also, the previ-

ously discussed AV integration in infants negates the view and its dependence

on the memory.

Analysis-by-Synthesis views

This relatively recent theory, assumes that the role of salient and distinguishable

visual information is to modulate the processing of the conforming auditory in-

put. According to van-Wassenhove and others, a salient visual information (for

example, the closure of the mouth during the articulation of /b/ ) that precedes

the onset of the corresponding acoustic information by several tenths of a sec-

ond, offers predictions for the incoming acoustic input, thereby speeding up

the processong of speech [131]. However, extension of the model is restricted

by the ambiguity that exists in the visual speech signal itself (for example the

articulatory gestures of /p/, /b/ and /m/ are indifferent).

Each of the aforementioned theories although explain many empirical findings,

they equally face criticisms. To address the discrepancy, exploiting a percept

arising from the combination of the features specified by heard and seen speech

would serve as the apt model to study the neuronal operation during multisen-

sory speech perception. And, McGurk effect precisely fulfills those require-

ments. We eleborate on McGurk effect in the following sections.
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Figure 1.2: Speech articulatory gestures often precede their corresponding
sounds. This early visual information has an impact on the way speech sounds
are processed [131].

1.2 McGurk effect: An entry point to understand AV

integration

Since its discovery nearly 40 years ago, McGurk effect has been predominantly

employed as the prototypical paradigm to understand multisensory speech

perception. Harry McGurk and John McDonald published Hearing lips and See-

ing Voices [90], a study in which they illustrate a remarkable audiovisual speech

phenomena known as McGurk effect. McGurk effect occurs when a acoustic

signal of a phoneme is dubbed onto specific semantically-incongruent visual sig-

nal of a phoneme. Observers of such incongruent audio-visual pairs (audo /ba/

+ visual /ga/) do not recognize the inter-modal differences and perceive (i.e.

hear) a phoneme (/da/) different from the auditory or visual signal.

McGurk effect effectively illustrates that speech perception is not only an audi-

tory process. Besides, a stronger evidence of AV integration is provided when

a unitary percept arises from the combination of the features specified by heard

and seen speech. For these reasons, McGurk effect has been used a extensively

used a s proxy measure to understand AV speech integration [6, 88, 100]. Fur-

thermore, the technical advances of neuroimaging tools has enabled contempo-
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rary cognitive-neuroscientists to exploit various psychophysical parameters of

McGurk effect to understand different aspects of AV speech perception.

1.2.1 Neurobiology of AV speech perception as revealed by

McGurk effect

Employing McGurk effect, substantial amount of studies have employed differ-

ent neuroimaging tools such as functional magnetic resonance imaging (fMRI),

magnetoncephalography (MEG), positron emission tomography (PET), elec-

troencephalography (EEG), transcranial magnetic stimulation (TMS) and tran-

scranial direct current stimulation (tDCS) to explore the neural workings dur-

ing AV speech perception. Although each of the aforementioned tools come

with some peculiarities, It is worth noting the nature of information that each

tool provides. fMRI and PET studies offer information regarding the hemody-

namic state of the brain structures involved, thereby providing the best spatial

resolution amongst the non-invasive tools. EEG and MEG provide electrophys-

iological information, with much higher temporal resolution. Finally, neuro-

modulation techniques TMS and tDCS allows us to understand the causal links

between brain activity and behavioral responses. Converging evidences em-

ploying the McGurk effect demonstrates activation of specific cortical modules

like the pSTS (posterior Superior Temporal Sulcus) [61, 98, 99, 117], frontal and

parietal areas [61,122] being responsible for the McGurk perception. Although,

Figure 1.3: Cortical locus of AV integration: Activity in the left superior tem-
poral sulcus (orange colored regions) during the McGurk perception [12].
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Nath and colleagues have shown existence of a positive correlation only be-

tween activity levels in STS levels and the propensity of McGurk susceptibil-

ity [99]. Furthermore, decreasing STS activity with 1 Hz TMS have been shown

to result in decreased perception of illusion and not the perception the congru-

ent AV stimulus [12]. This finding demonstrates the important role of the cor-

tical loci STS in AV integration, proved by the lack of influence on unisensory

processes since the congruent stimuli presentation can be perceived accurately

by each of the isolated sensory modalities. However, to better understand the

specific role of different brain regions in this process it is important to explore

the temporal dynamics of the recruitment of each area.

Figure 1.4: Prestimulus activity: (A) Time–frequency representation of the
prestimulus interval at sensor level for the comparison between “fusion” and
“unimodal” trials. Time 0 ms indicates the onset of mouth movement and au-
dio stream. (B) Topography (14-30 Hz, -380 to -80 ms) of the positive beta- band
cluster found in the prestimulus interval at sensor level for the comparison be-
tween fusion and unimodal trials. [70].

Addressing the question on temporal dynamics, electrophysiological evidences

have explored signatures in the event-related brain potentials (ERPs) and oscil-

lations in specific frequency ranges. Seminal studies by Keil and others have

shown that activity in the beta band can be predict the perception of McGurk

effect of the observers [70]. Also, evidences further show the significance of
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beta [110] and gamma band activity [63] toward illusory (cross-modal) percep-

tual experience. Studies employing connectivity measures on functional imag-

ing and electrophysiological data primarily demonstrate the functional connet-

ness of left Superior temporal gyrus to the frontal and parietal regions crucial

for ilusory speech perception [70].

Put together, McGurk effect employed as a proxy to understand multisensory

speech perception accentuate the role of brain structures especially in the tem-

poral lobe to be pivotal for cross-modal perception. Also, the electro-physiological

evidences pinpoint the implications of specific brain oscillations during speech

perception. Importantly, these evidences have enabled scientists in the concep-

tualization and design of effective diagnostic markers for speech related disor-

ders.

McGurk effect in clinical populations

Impaired multisensory integration have been reported in population with Schiz-

ophrenia, Dyslexia and Autism Spectrum Disorders. And, more and more re-

search is being done using the McGurk illusion to better understand multisen-

sory integration in these patients.

One of the most studied clinical group in the field of sensory integration is the

Autism Spectrum Disorder (ASD) - is characterized by deficits in social interac-

tion, language development and motor impairments with neurological causes.

It has been observed that propensity of McGurk perception is much less than in

the neurotypical population [128]. The lesser incidence of McGurk perception

has been attributed by some to peculiar gaze pattern for face stimuli known to

take place in the ASD patients. However, contrasting evidences show no signif-

icant difference in the eye movement in ASD patients and the controls indicat-

ing lack of integration. In addition to studies with individuals where specific

multisensory integration processes are compromised, McGurk effect has been

employed to assess development and semantic representations in dyslexic chil-

dren [11] and also understand social interaction in Schizophrenic patients [11].
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The McGurk illusion is the most predominantly used multisensory integration

illusion paradigms. As reviewed above, several studies applied this illusion as

a tool to better comprehend how audiovisual speech information is processed.

Over the years, with availability of larger datasets and advanced neuroimag-

ing tools, the robustness of experimental results have increased. However, a

prominent approach still followed in the field is to localize the cortical loci piv-

otal for a perception or looking at connectivity between key cortical regions.

Understanding the large-scale network organization of the brain is a crucial for

formulating a comprehensive theory on the information processing of multi-

sensory speech perception.

1.3 Towards understanding the large-scale networks

of AV integration

Our understanding of the workings of the brain and cognition have primar-

ily come from modular paradigm. The modular paradigm postulates that our

cognitive abilities emerge as result of activations in brain areas working as in-

dependent processes [36]. However, converging evidences over the years elu-

cidate limitations of the approach [44]. Even the sensory cortices, considered

to be highly modular structures functionally has been shown to possess cross-

modal interactions [45]. A more emerging view posits that information pro-

cessing associated with the functioning of higher order brain functions (action,

perception, learning, language, and cognition) is carried out by large scale neu-

ral networks [19]. Although the structural architecture of the brain has been

extensively studied, the complex dynamics elicited by the neural networks as

brain oscillations and synchronizations during any cognitive task remains still

at a nascent stage.
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1.4 Scope of the thesis

Speech perception is a quintessential human trait that inextricably involves

multisensory integration. Incidence of visual cues (talker’s mouth movements)

aids speech perception especially in noisy surrounding. Understanding the

neural processes that engender the integration of audio-visual (AV) cues in

speech perception has been a topic of intense research for more than six decades.

A predominantly employed paradigm in AV speech perception studies is the

McGurk effect. During McGurk effect, a listener perceives a completely dif-

ferent syllable (illusory percept) when presented with an auditory phoneme

dubbed onto certain semantically-incongruent visual phoneme (e.g audio/ba/

dubbed onto visual/ga/ is perceived as /da/). McGurk effect has been used

as a proxy measure for AV speech perception as the frequency with which an

observer perceives the illusion offers an index to AV integration.

We focused on understanding the dynamics of large-scale cortical network that

foster AV speech perception. We analyzed the properties of large-scale oscil-

latory network with the following goals that we elaborate in the subsequent

chapters in turn :

(1) Identify the markers in the large-scale network during the temporal integra-

tion of AV stimuli.

(2) Understand segregation and integration of cortical information processing

during cross-modal perception.

(3) Determine the markers underlying inter-individual and inter-trial variabil-

ity during cross-modal perception.

(4) Employ a neural-mass model to provide a neurodynamic explanation for

the empirical signatures of inter-individual and inter-trial variability.
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Neuro-cognitive networks during
temporal integration of audio-visual
speech

2.1 Introduction

Perception of the external world involves the efficient integration of informa-

tion over multiple sensory systems [137]. During speech perception, visual cues

from the speaker’s face enhances the intelligibility of auditory signal [21, 53,

126]. Also, the incidence of specific semantically-incongruent visual informa-

tion modulates auditory perception, for example, an auditory speech sound

/ba/ superimposed with a speaker’s lip movement of /ga/, gives rise to a

perception of /da/ [90]. Similarly, an incongruent AV combination of /pa/-

/ka/ elicits an ‘illusory’ (cross-modal) percept /ta/ [84,90,132]. However, such

multisensory-mediated effects are influenced by the relative timing of the audi-

tory and visual inputs [96,124,130,132]. Consequently, the temporal processing

of the incoming multiple sensory (auditory and visual) information and their

integration to yield a crossmodal percept is pivotal for speech perception [32].

Where and how the underlying information processing takes place is subject of

several research studies which we review in the following paragraph. Cortical

and sub-cortical regions and functional brain networks with specific patterns
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of connectivity becomes the prime target for these investigations. In a nutshell,

characterization of the multi-scale representational space of temporal process-

ing underlying multisensory stimuli is an open question to the community.

As we discuss in the following paragraph, a dominant strategy in multisen-

sory research is the search for loci comprising of brain areas that are responsi-

ble for triggering the multisensory experience [12, 61, 99]. However, from the

perspective of functional integration [17, 19] understanding the large-scale net-

work organization underlying the temporal processes is a critical component of

formulating a comprehensive theory of multisensory speech perception. Nu-

merous neuroimaging and electrophysiological studies have explored the neu-

ral mechanism that underpins audio-visual integration employing McGurk ef-

fect [52, 61, 63, 70, 99, 114, 117, 122, 125, 131, 137]. A majority of these studies

accentuate the role of primary auditory and visual cortices, multisensory ar-

eas such as posterior superior temporal sulcus (pSTS) [61, 98, 99, 117] and other

brain regions including frontal and parietal areas [61, 122] in the perception of

the illusion. In particular, the electrophysiological evidences primarily empha-

sizes the significance of beta [70,110] and gamma band activity [63] toward illu-

sory (cross-modal) perceptual experience. Source-level functional connectivity

among brain areas employing phase synchrony measures, reveal interactions

among cortical regions of interest (left Superior Temporal Gyrus) and the whole

brain that correlates with cross-modal perception [70]. These studies either re-

veal the activations in the cortical loci or the functional connectedness to par-

ticular cortical regions of interest that are elemental for the illusory percept. On

the other hand, the role of timing between auditory and visual components in

AV speech stimuli has been studied from the perspective of the main modules

in multisensory processing [61]. Recently, we have addressed this issue using a

dynamical systems model to study the interactive effects between AV lags and

underlying neural connectivity onto perception [129]. Interestingly, how these

network are functionally connected in the context of behavioral performance or
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perceptual experience are increasingly being revealed [70,98]. Nonetheless, the

identification and systematic characterization of these networks under cross-

modal and unimodal perception is an open question.

A traditional measure of large-scale functional connectivity in EEG is the sensor-

level global coherence [2, 9, 24, 25, 42]. Global coherence can be described as ei-

ther the normalized vector sum of all pairwise coherences between sensor com-

binations, the frequency domain representation of cross-correlation between

two time-series [24,80] or the ratio of the largest eigenvalue of the cross-spectral

matrix to the sum of its eigenvalues [94]. An increased global coherence con-

firms the presence of a spatially extended network that spans over several EEG

sensors, since local pairwise coherence would not survive statistical threshold

after averaging. To the best of our knowledge, global coherence has not been

used in the domain of audio-visual (AV) speech perception to evaluate the pres-

ence of whole brain networks. Furthermore, characterization of the differences

in whole brain network organization underlying cross-modal vs. unimodal per-

ceptual experience vis-à-vis the timing of sensory signals will be critical to un-

derstanding the neurobiology of multisensory perception.

Here, we used the incongruent McGurk pair (audio /pa/ superimposed on the

video of the face articulating /ka/) to induce the illusory percept /ta/. Further,

we generated a temporal asynchrony in the onset of audio and visual events of

the McGurk pair to diminish the rate of cross-modal responses. Subsequently,

we exploited the inter-trial perceptual variability to study integration both at

behavioral levels by accounting perceptual response and eye-tracking as well as

neural levels using EEG. We considered subjects’ /pa/ responses as unimodal

perception since it represents only one sensory stream and /ta/ responses as

cross-modal perception since it represents an experience resulting from inte-

grating features from two modalities [32]. We studied the spectral landscape

of perceptual categorization as function of AV timing and found patterns that

matched with previous reports. Finally, we evaluate the large-scale brain net-
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work organization dynamics using time-frequency global coherence analysis

for studying perceptual categorization underlying different temporal process-

ing scenarios at various AV lags. In the process, we reveal the complex spectro-

temporal organization of networks underlying multisensory perception.

2.2 Materials and Methods

2.2.1 Participants

Nineteen [10 males and 9 females, ranging from 22–29, (mean age 25; SD = 2)]

healthy volunteers participated in the study. No participant had neurological or

audiological problems. They all had normal or corrected-to-normal vision and

were right handed. The study was carried out following the ethical guidelines

and prior approval of Institutional Review Board of National Brain Research

Centre, India.

2.2.2 Stimuli and Trials

The experiment consisted of 360 trials overall in which we showed the videos

of a male actor pronouncing the syllables /ta/ and /ka/ (Figure 2.1). One-

fourth of the trials consisted of congruent video (visual /ta/ auditory /ta/) and

the remaining trials comprised incongruent videos (visual /ka/ auditory /pa/)

presented in three audio-visual lags: 450 ms (audio lead), 0 ms (synchronous),

+450 ms (audio lag), each comprising one-fourth of the overall trials. The stim-

uli were rendered into a 800 600 pixels movie with a digitization rate of 29.97

frames per second. Stereo soundtracks were digitized at 48 kHz with 32 bit

resolution. The stimuli were presented via Presentation software (Neurobehav-

ioral System Inc.). The video was presented using a 17 LED monitor. Sounds

were delivered at an overall intensity of 60 dB through sound tubes.

The experiment was carried out in three blocks each block consisting of 120
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/ta

Figure 2.1: Stimuli : Each block represents a video. (A) The McGurk stimuli:
Audio /pa/ superimposed on visual (lip movement) /ka/ was presented un-
der different audio-visual (AV) lag scenarios. The location of onset of audio is
varied with respect to a person’s initiation of lip-movement /ka/ at -450, 0, and
450 ms. (B) In congruent /ta/ condition, audio /ta/ is presented synchronously
with onset of lip movement /ta/.

trials. Inter-trial intervals were pseudo-randomly varied between 1.2 and 2.8s.

Each block comprised the four stimuli types (30 trials of each): Congruent video

and three incongruent videos with the AV lags. The subjects were instructed to

report what they heard while watching the articulator using a set of three keys.

The three choices were /pa/, /ta/ and “anything else” (Other).

Post EEG scan, the participants further performed a behavioral task. The task

comprised of 60 trials, comprising 30 trials each of auditory syllables /pa/ and

/ta/. Participants were instructed to report their perception using a set of two

keys while listening to syllables. The choices were /pa/ and /ta/.
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2.2.3 Data Acquisition and Analysis

EEG

EEG recordings were obtained using a Neuroscan system (Compumedics Neu-

roScan, SynAmps2) with 64 Ag/AgCl sintered electrodes mounted on an elas-

tic cap of Neuroscan in a 10–20 montage. Data were acquired continuously in

AC mode (sampling rate, 1 kHz). Reference electrodes were linked mastoids,

grounded to AFz. Channel impedances were kept at < 5 kΩ. All subsequent

analysis was performed in adherence to guidelines set by [69].

Eye Tracking

Gaze fixations of participants on the computer screen were recorded by Eye-

Tribe eye tracking camera with resolution 30 Hz (https://theeyetribe.com). The

gaze data were analyzed using customized MATLAB codes. The image frame

of the speaker video was divided into 3 parts, the head, the nose and the mouth

(Figure 2.2A). The gaze locations at these quadrants over the duration of stimu-

lus presentation were converted into percentage measures for further statistical

analysis.

Pre-Processing of EEG Signals

The collected EEG data were subsequently filtered using a bandpass of 0.2–45

Hz. Epochs of 400 and 900 ms before and after the onset of first stimuli (sound

or articulation) were extracted and sorted based on the responses, /ta/, /pa/,

and “other” respectively. Epochs were baseline corrected by removing the tem-

poral mean of the EEG signal on an epoch-by-epoch basis. Epochs with max-

imum signal amplitude above 100µV or minimum below −100µV were re-

moved from all the electrodes to eliminate the response contamination from

ocular and muscle-related activities. Approximately 70–75 % ( 250 trials) trials

of each subject were preserved after artifact rejection. In the final data analy-
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sis, a mean of 24 (SD = 9), 18 (SD = 9), and 25 (SD = 13) incongruent trials at

450, 0, +450 ms AV lags respectively in which the participants responded /pa/

were included. Similarly, a mean of 32 (SD = 15), 42 (SD = 13), and 32 (SD =

14) incongruent trials at 450, 0, +450 ms AV lags respectively in which the par-

ticipants responded /ta/ were included in the final analyses. Approximately

2–6% of trials were excluded from each of the aforementioned trial categories.

The response category with lowest number of occurrences was /pa/ at 0 ms AV

lag with 270 hits from a total of 1350 trials across all volunteers (15 90). Subse-

quently, we randomly resampled 270 trials from /ta/ responses at 0 ms AV lag,

and /pa/ and /ta/ responses at other AV lags. Thus, for each AV lag condition,

270 trials chosen randomly from the respective sorted response epochs (/pa/ or

/ta/) entered the final analyses.

Spectral Analysis

Power spectra of the preprocessed EEG signals at each electrode were com-

puted on a single trial basis. We computed the spectral power at different

frequencies using customized MATLAB (www.mathworks.com) codes and the

Chronux toolbox (www.chronux.org). Time bandwidth product and number

of tapers were set at 3 and 5 respectively while using the Chronux function

mtspecgramc.m to compute the power spectrum of the sorted time series in

EEG data. Subsequently, the differences in the power during /ta/ and /pa/ re-

sponses at each AV lag were statistically compared by means of a cluster-based

permutation test [87] using the fieldtrip toolbox (www.fieldtriptoolbox.org).

The fieldtrip function ft_freqstatistics.m was used to perform the cluster com-

putation. During the statistical comparison, an observed test statistic value be-

low the threshold of 0.05 in at least 2 of the neighborhood channels were set

for being considered in the cluster computation. Furthermore, 1000 iterations

of trial randomization were carried out for generating the permutation distri-

bution at a frequency band. Subsequently, a two tailed test with a threshold of
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0.025 was used for evaluating the sensors that exhibit significant difference in

power. Statistical analysis was carried out separately for alpha (8–12 Hz), beta

(13–30 Hz), and gamma (30–45 Hz) frequency ranges.

Large-Scale Network Analysis

For deciphering the coordinated oscillatory brain network underlying the AV

integration, we employed global coherence analyses [16, 24, 80, 87] on the per-

ceptual categories (/ta/ and /pa/). A higher value of this measure will indicate

the presence of strong large-scale functional networks. We computed the global

coherence by decomposing information from the cross-spectral matrix employ-

ing the eigenvalue method [94]. The cross-spectrum value at a frequency f

between sensor pair i and j was computed as:

CX
ij = 1/K · ∑k

k=1Xk
i ( f ).Xk

j ( f ) (2.1)

where Xk
i and Xk

i are tapered Fourier transforms of the time series from the

sensors i and j respectively, at the frequency f . A 6262 matrix of cross spec-

tra, that represents all pairwise sensor combination, was computed in our case.

Conversely, to characterize the dynamics of coordinated activity over time, we

evaluated the time-frequency global coherogram. We employed the Chronux

function cohgramc.m to obtain the time-frequency cross-spectral matrix for all

the sensor combinations. Subsequently, for each trial we obtained the global

coherence at each time point and frequency bin by computing the ratio of the

largest eigenvalue of the cross-spectral matrix to the sum of the eigenvalues

employing the following equation:

CGlobal( f ) =
SY

1 ( f )

∑n
i=1SY

i ( f )
(2.2)
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where CGlobal( f ) is the global coherence, SY
1 ( f ) is the largest eigenvalue and the

denominator ∑n
i=1SY

i ( f ) represents the sum of eigenvalues of the cross-spectral

matrix [24]. Time-frequency global coherogram computed for /ta/ and /pa/

responses were further compared at each time point for significant difference in

different frequency bands (alpha, beta, and gamma) by means of cluster-based

permutation test [87].

For every frequency bin at each time point, the coherence difference between

/ta/ and /pa/ was evaluated using the Fisher’s Z transformation

Z( f ) =
tanh−1(C1( f ))− tanh−1(C2( f ))− ( 1

2m1−2 −
1

2m2−2)! )√
1

2m1−2 +
1

2m2−2

(2.3)

where 2m1, 2m2 = degrees of freedom; Z( f ) ≈ N(0, 1) a unit normal distribu-

tion; and C1 and C2 are the coherences at frequency f .

The coherence Z-statistic matrix obtained from the above computation formed

the observed Z-statistics. Subsequently, from the distribution of observed Z-

statistics, 5th and the 95th quantile values were chosen as upper and lower

threshold i.e., the values below and above the threshold values respectively

were considered in the cluster computation. Based on spectral adjacency (4–7

Hz, theta; 8–12 Hz, alpha; 13–30 Hz, beta; 30–45 Hz, gamma), clusters were

selected at each time point. Consequently, cluster-level statistics were com-

puted by taking the sum of positive and negative values within a cluster sepa-

rately. Following the computation of the cluster-level statistics of the observed

Z-statistics, 1000 iterations of trial randomization were carried out. For every

iteration, cluster-level statistic was computed on the randomized trials to gener-

ate the permutation distribution. Subsequently, the values of observed cluster-

level statistics were compared with the 2.5th and the 97.5th quantile values of

the respective permutation distribution. The observed cluster-level statistics

value that were below 2.5th and above 97.5th quantile consequently for two time
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points formed the negative and positive clusters respectively.

2.3 Results

2.3.1 Behavior

Behavioral responses corresponding to McGurk stimuli with the AV lags were

converted to percentage measures for each perceptual category (/pa/, /ta/, or

“other”) from all subjects. We set a minimum threshold of 60% of /ta/ response

in any AV lag, 450, 0, and +450 ms to qualify a participant as an illusory per-

ceiver. 15 participants passed this threshold and 4 participants failed to per-

ceive above the set threshold (Figure 2.2B). Data from only 15 perceivers were

used for further group level analysis. We observed that maximum percentage

of illusory (/ta/) responses occurred at 0 ms AV lag when the lip movement

of the speaker was synchronous with the onset of auditory stimulus (Figure

2.2C). Also, the percentage of /pa/ responses was minimum at 0 ms AV lag. We

ran one-way ANOVAs on the percentage responses for /pa/, /ta/, and “other”

with AV lags as the variable. We observed that AV lags influenced the percent-

age of /ta/ [F(2,44) = 27.68, p < 0.0001] and /pa/ [F(2,44) = 5.89, p = 0.0056]

responses. However, there was no influence of AV lags on “other” responses

[F(2,44) = 0.36, p = 0.700]. We also performed paired Student’s t-test on the per-

centage of responses (/ta/ and /pa/) at each AV lag. Insignificant differences

of 10.20–11.40 % were observed between /ta/ and /pa/ responses at 450 ms

AV lag [t(14) = 0.63, p = 0.27] and +450 ms AV lag [t(14) = 0.45, p = 0.67]

respectively. However, at 0 ms AV lag we observed the percentage of /ta/

responses were significantly higher by 36.58 % than the percentage of /pa/

responses,t(14) = 10.20, p < 0.0001. Furthermore, the hit rate of /ta/ responses

during congruent /ta/ was observed to be 0.97. Also, the hit rate of /ta/ and

/pa/ during auditory alone conditions were observed to be 0.96 and 0.98 re-
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Figure 2.2: Behavior : (A) overall eye gaze fixation overlaid over a single frame
of the stimuli (B) the bar graphs show the percentage of /ta/ and /pa/ re-
sponses for each subject at the AV lags:450,0, +450 ms as indicated by the colors
guide (C) shows the number of normalized group responses in each of the three
perceptual categories: “/pa/”, “/ta/”, and “other” for each AV lag. The error
bars represent the 95% confidence interval (D) Mean gaze fixation percentages
at mouth for each perceptual category at the respective stimuli (incongruent
AV lags 450, 0, +450 ms, and congruent /ta/) across trials and participants.
The error bars represents 95% confidence interval.

spectively.
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Gaze fixations at different locations on the speaker’s, head, nose and mouth

areas were converted into percentage measures trial-by-trial for each subject

and stimuli conditions. Figure 2.2A indicates that most of the gaze fixations

were around head, nose, and mouth areas only. We ran a repeated measures

2-way ANOVA on mean gaze fixation percentages across trials at mouth areas

with lags and perceived objects (/pa/ or /ta/) as variables. No significant dif-

ferences were found for gaze fixations across lags [F(2,89) = 0, p = 0.95] and

perceptual categorization [F(2,89) = 1.33, p = 0.27] as well as their interactions

[F(2,89) = 0.01, p = 0.85]. Number of /pa/ responses for congruent /ta/ stimu-

lus was negligible (<1%), to do meaningful statistical comparisons. We also per-

formed paired Student’s t-tests on the mean gaze fixation percentages for /pa/

and /ta/ responses at each lag. Increases in gaze fixation at mouth during /ta/

perception by 15.5 % at 450 ms AV lag [t(14) = 0.90, p = 0.38], 7.2 % at 0 ms AV

lag [t(14) = 0.90, p = 0.38] and 28.54% at +450 ms AV lag [t(14) = 0.32, p = 0.74]

(see Figure 2.2D for the mean values) were not statistically significant.

2.3.2 Oscillatory Activity

Subsequent to replicating the perceptual [96,132]and the eye gaze behavior [50]

results as reported earlier, the focus of interest was what differentiates the two

perceptual states (/ta/ and /pa/) in terms of brain oscillations and large-scale

functional brain networks. Therefore, spectral power at different frequency

bands during /ta/ and /pa/ perception were compared at different AV lags.

Power spectra at each sensor computed in the time window before (Figure

2.3A) and after ( Figure 2.3B) the onset of first stimuli showed distinct changes

in power for the two states. Cluster-based permutation tests employed for com-

paring the spectral power between the perceptual states show that /ta/ percep-

tion is associated with an overall suppression in power for all AV lags (Figure

2.3). The magenta “*” on the topoplots highlight the position of the negative

clusters showing a significant suppression at 95% confidence levels in power.
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The blue areas on the scalp map highlight the regions that show decrease in

the spectral power and the orange and red regions highlight the regions that

show an increase in the spectral power. During the pre-stimulus period, one

significant negative cluster [t(269) = 2.04, p = 0.02] over temporo-occipital

sensors, two over frontal and occipital sensors [t(269) = 3.57, p = 0.002 and

t(269) = 3.14, p = 0.0002] and one over occipital sensors [t(269) = 2.18, p = 0.01]

were observed for alpha, beta, and gamma bands respectively in 0 ms AV lag

(Figure 2.3A). Also, one significant negative cluster over fronto-temporal and

occipital sensors [ t(269) = 2.65, p = 0.004], one over frontal and occipital sen-

sors [t(269) = 2.31, p = 0.01] were observed at alpha and beta bands respectively

during +450 ms AV lag (see Figure 2.3C). However, no significant difference

was found during 450 ms AV lag.

Furthermore, during post-stimulus onset period, the /ta/-/pa/ comparison re-

vealed one significant negative cluster over all sensors [t(269) = 1.93, p = 0.02],

one over frontal, parietal, and occipital sensors [t(269) = 2.70, p = 0.004] and

one over occipital sensors [t(269) = 2.54, p = 0.006] at alpha, beta, and gamma

bands respectively during 450 ms AV lag (see Figure 2.4C). During 0 ms AV

lag, one significant negative cluster [t(269) = 2.22, p = 0.01] spanning over all

sensors and one over occipital sensors [t(269) = 2.10, p = 0.02] was observed

at alpha and beta bands respectively (see Figure 2.4D). However, no significant

difference in power between /ta/-/pa/ trials was observed during the post-

stimulus period at +450 ms AV lag. Overall, significant spectral power was

lower during /ta/ than /pa/ as reflected from cluster-based analysis during

pre- and post-stimulus periods.

2.3.3 Time-Frequency Global Coherogram

Eigenvalue based time-frequency global coherogram [24] was computed for the

epochs of 1.3 s duration (0.4 s pre-stimulus, and 0.9 s post-stimulus segments).

The time locking was done to the first sensory component, audio or visual, for
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Figure 2.4: Spectral Difference: The topoplots and the magenta “*” highlight
the clusters that show significant difference between the perceptual categories
/ta/-/pa/ during the three stimulus conditions: 450 ms AV lag at (A) pre-
stimulus onset (B) post-stimulus onset, 0 ms AV lag (C) pre-stimulus onset (D)
post-stimulus onset, +450 ms AV lag (E) pre-stimulus onset (F) post-stimulus
onset.

450 and +450 ms AV lag and the onset of AV stimulus for 0 ms AV lag. The

mean coherogram plots for the perceptual categories /ta/ and /pa/ and their

difference at AV lags: 450 ms (see Figures 2.5A–C), 0 ms (see Figures 2.5D–F),

+450 ms (see Figures 2.5G–I) showed relatively heightened global coherence in

the theta band (4–8 Hz) throughout the entire epoch duration. Cluster-based

permutation tests employed to compare the mean coherogram for /ta/ and

/pa/ at the respective AV lags revealed both positive and negative clusters (see
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Figures 2.5C,F,I). Positive clusters highlighted in black dashed rectangles sig-

nify time-frequency islands of increased synchrony and the negative clusters in

red dashed boxes signify islands of decreased synchrony in the global neuronal

network.

In the pre-stimulus period, we observed two positive and one negative cluster

each during 450 and +450 ms AV lag. The first and second positive clusters

during 450 ms AV lag were observed in the frequency bands beta (16–30 Hz)

(z97.5 = 0.29) and gamma (>30 Hz) (z97.5 = 0.78) respectively and the nega-

tive cluster was found in theta band (4–7 Hz) (z0.025 = 0.29). Here, z97.5 and

z0.025 represent the two-tailed thresholds at p = 0.05 set by permutation tests

to compute the significantly different cluster (for details, see Methods section).

Similarly during +450 ms AV lag the first and second positive clusters were

observed in the frequency bands beta (z97.5 = 0.26) and gamma (z97.5 = 0.34)

respectively and the negative cluster was found in the alpha band (8–12 Hz)

(z0.025 = 0.78). However, during 0 ms AV lag, only a significant positive cluster

was observed in the alpha frequency band (z97.5 = 0.58).

In the post-stimulus onset period, during 450 ms AV lag (see Figure 2.5C), three

positive clusters were observed, (1) in alpha band with temporal range between

200 and 560 ms (z97.5 = 0.50), (2) in beta band with temporal range between 50

and 500 ms (z97.5 = 0.29), and (3) in gamma band between 50 and 400 ms

(z97.5 = 0.78). Also, a negative cluster (z0.025 = 1.02) was observed in the theta

band between 800 and 900 ms. During +450 ms AV lag (see Figure 2.5I), two

positive clusters were observed, one in the theta band (z97.5 = 0.73) between 0

and 500 ms and the other one in gamma band (z97.5 = 0.34) between 0 and

200 ms. A negative cluster was also observed in the theta band (z0.025 = 0.68)

between 700 and 850 ms. Interestingly, during 0 ms AV lag (see Figure 2.5F)

we observed a positive cluster (z97.5 = 0.26) precisely in the gamma band ( 300

and 700 ms) and three negative clusters (p ≤ 0.05). Two of the negative clusters

(z0.025 = 0.31) were observed in the theta band around 300 and 600 ms and
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Figure 2.5: Time-frequency representations of large-scale functional brain
networks: Mean time frequency coherogram for different perceptual categories
time locked to the onset of the first sensory component (A or V) during the
three conditions and the mean coherence difference between /ta/ and /pa/ re-
sponses at different AV lags: for 450 ms (A) /ta/ (B) /pa/ (C) /ta/-//pa/; for
0 ms (D) /ta/ (E) /pa/ (F) /ta/-//pa/; for 450 ms (G) /ta/ (H) /pa/ (I) /ta/-
//pa/..

700 and 900 ms and the third negative cluster incorporated both alpha and beta

bands (9–21 Hz) (z0.025 = 0.25) and appeared between 300 and 800 ms.
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2.4 Discussion

Characterizing the dynamics of the whole brain network is essential for un-

derstanding the neurophysiology of multisensory speech perception. We have

shown that the spatiotemporal dynamics of the brain during speech percep-

tion can be represented in terms of brain oscillations and large-scale functional

brain networks. We explicitly focused on investigating the characteristics of the

brain networks that facilitate perception of the McGurk illusion. We exploited

the perceptual variability of McGurk stimuli by comparing the oscillatory re-

sponses and network characteristics within identical trials. The main findings

of the study are: (1) heightened global coherence in the gamma band along with

decreased global coherence in the alpha and theta bands facilitates multisen-

sory perception (2) a broadband enhancement in the global coherence at theta,

alpha, beta, and gamma bands aids multisensory perception for asynchronous

AV stimuli, as brain engages more energy for multisensory integration. We dis-

cuss the behavioral and neural-level findings in following sub-sections.

Variability of Perceptual Experience

A vast body of literature has reported that under controlled settings one can in-

duce illusory perceptual experience in human participants [70, 84, 90, 98, 132].

Here, we constructed incongruent AV stimuli (auditory /pa/ superimposed

onto video of face articulating /ka/) using three different AV lags: 450 ms (au-

dio precede articulatory movements), 0 ms (synchronous onsets of audio and

articulatory movements), and +450 ms (articulatory movements precede au-

dio) (see Figure 2.1). We identified that a categorical perceptual difference ap-

peared with variation in AV lags. Synchronous AV stimuli resulted in higher

percentage response of crossmodal (/ta/) perception (Figure 2.2C) whereas AV

lags of 450 and +450 ms resulted in lowering of the percentage of crossmodal

percept and higher occurrence of the unimodal percept /pa/. Furthermore,

we observed high hit rate of /ta/ responses both during congruent /ta/ stim-
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uli (>90%) and during our post-hoc “auditory alone” behavioral experiment

(>95%). Behavioral studies by van Wassenhove et al. (2007) [132] demon-

strate 200 ms of asynchrony as the temporal window of bimodal integration.

However, electrophysiological studies especially in the domain of preparatory

processes demonstrate the elicitation of ERP components up to 600–800 ms in

response to a cue followed by a target stimulus [121]. Extending this line of

reasoning to our experimental paradigm, we believe an existence of temporal

integration mechanisms beyond 200 ms does not allow the percentage of /pa/

perception to reach the level for congruent multisensory or purely auditory per-

ception. In the current study we focused on the boundaries of stable illusory

perception but the temporal boundaries of multisensory integration needs to be

tested by future studies.

Interestingly percentage of gaze fixation at the mouth of the speaker for cross-

modal response trials did not vary significantly at any AV lags based on t-test.

Also, the interaction between lags and perceptual categorization was not signif-

icant when analyzed with 2-way ANOVA. Even though not statistically signif-

icant, the mean gaze fixation percentages at mouth for crossmodal perception

were slightly higher than unimodal perception at all AV lags. Therefore, we

cannot completely rule out the findings of an earlier study that show that fre-

quent perceivers of McGurk effect fixate more at the mouth of the speaker [50]

as well as we were limited by the number of participants to evaluate correla-

tions between the behavioral results and the percentage of gaze fixation at 0 ms

AV lag. On the other hand the subjective behavioral response for perceptual

categorization clearly showed an interaction effect between AV lags and per-

ceived objects. It is important to note that the identical multisensory stimuli

generated varying responses for different trials. All stimuli being multisen-

sory, differential perception served as an efficient handle to tap into the percep-

tual processing underlying speech perception. Our behavioral response results

are consistent with previous studies on McGurk stimuli [96, 132] that demon-
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strate the influence of AV lags on perceptual experience. Hence, we expected

to identify the neurophysiological processes underlying different multisensory

perceptual scenarios.

Spectral Landscape of the Cortical Activity

Non-parametric statistical comparison between the perceptual categories (/ta/–/pa/)

showed suppression of the spectral power in alpha, beta, and gamma frequency

bands (see Figure 2.4). Suppression of alpha-band power has been associated

with attention and language comprehension processes by enabling controlled

access to knowledge [10,51,76,105]. Accordingly, the suppression of alpha-band

power observed in our study can be attributed to the attention related network

aiding access to stored knowledge and filter redundant information.

Beta-band power was observed to be suppressed at frontoparietal to occipital

sensors during 450 ms AV lag and at occipital scalp regions during 0 ms AV

lag but no such suppression was observed during +450 ms AV lag. Beta band

power has been linked with various cognitive facets including top-down con-

trol of attention and cognitive processing [39]. Besides, in the domain of multi-

sensory integration and language processing, suppression of beta-band power

has been associated with the occurrence of unexpected stimuli [10, 141]. Fur-

thermore, recent studies also show suppression of beta power during the per-

ception of the McGurk illusion [110]. Extending the line of reasoning from the

aforementioned studies, suppression of beta-band power might be associated

to the occurrence of an unexpected stimulus and its processing. Visual-lead

condition, wherein we observed no significant difference in the beta power, is

possibly the most predictable situation and hence significant beta power modu-

lation was not detected. Behaviorally, Munhall et al. (1996) [96], report McGurk

illusion is most dominant between an AV lag of 0–200 ms and there is a slight

asymmetry toward positive AV lags (visual lead). In fact, our data from a dif-

ferent experiment also replicated this result.

Gamma-band power was observed to be significantly suppressed only during
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450 ms AV lag at the occipital scalp regions. Also, in the pre-stimulus period

significant reduction in gamma band power was observed at occipital scalp

regions during 0 ms AV lag. Existing studies have demonstrated the role of

gamma-band oscillations in cognitive functions like visual perception, attention

and in the processing of auditory spatial and pattern information [62,65]. Also,

gamma band activity over sensory areas has been attributed to the detection

of changes in AV speech [64]. However, we observed a suppression in gamma

band activity which may be linked with preparatory processes over wider net-

work that waits for the expected visual information to arrive. Although, the

brain oscillatory responses to multisensory perception have been extensively

studied, a consensus on the mechanisms associated with these oscillations re-

mains elusive. Our study contributes to this vast body of work in conveying

that multisensory speech perception requires complex signal processing mech-

anisms that involves the participation of several brain regions. Therefore, un-

derstanding the process requires analyzing the whole brain operating as large

scale neurocognitive network. In the subsequent section we discuss the net-

work analysis results.

Neurocognitive-Network Level Processing Underlying Illusory Perception

Global time-frequency coherogram (see Figure 2.5) computed for the percep-

tual categories quantifies the extent of coordinated neuronal activity over the

whole brain. Global coherence reflects the presence of neuro-cognitive net-

works in physiological signals [17]. Previous studies posits that neuronal co-

herence could provide a label that binds those neuronal assemblies that repre-

sent same perceptual object [37, 38, 136]. Besides, going by the communication-

through-coherence (CTC) hypothesis, only coherently oscillating neuronal groups

communicate effectively as their communication window for spike output and

synaptic input are open at the same time [43,118]. Hence, coherent transmission

poses a flexible mechanism that facilitates the integration of converging streams

in time windows of varying duration. In our analysis we observed a relatively
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heightened theta-band coherence for both the perceptual categories at all the

AV lags (see Figures 2.5 A,B,D,E,G,H). Theta band coherence has been associ-

ated to cognitive control processes [26]. Accordingly, the enhanced theta-band

coherence might reflect the control processes preparing for upcoming stimuli.

Non-parametric statistical analysis employed to test the global coherence dif-

ferences between /ta/ and /pa/ during 0 ms AV lag, revealed a positive clus-

ter, signifying enhanced synchrony specifically at the gamma band (between

300 ms and 700 ms). Also, we observed negative clusters (between 300 and

900 ms) in the theta, alpha and beta bands that signify decreased synchrony

among the underlying brain regions. Overall temporal congruence of AV stim-

uli results in a narrow-band coherence whereas lagged AV stimuli seemed to

engage a broadband coherence (see Figure 2.5 C,F,I). However, we had one

limitation because of the nature of our stimuli. A direct statistical comparison

across lagged conditions was not meaningful since each lagged condition had

a different temporal sequence of audio-visual components.

Inter-areal coherence of oscillatory activity in the beta frequency range (15–30

Hz) has been associated with top-down processing [139]. Moreover, top-down

processing involves the modulation of the hierarchical sensory and motor sys-

tems by pre-frontal and frontal brain areas [92]. The dense anatomical intercon-

nectivity among these association areas give rise to self-organized large scale

neuronal assemblies defined as neuro-cognitive networks (NCNs), with respect

to the cognitive demands [20]. In this context, our finding of increased coher-

ence in the beta band during 450 and +450 ms AV lag is especially relevant as it

enables us to hypothesize that synchronization of the beta oscillations provides

long range inter-areal linkage of distributed cortical areas in NCNs. Such net-

works can readily process the retrieval of well learnt audio-visual associations

suggested by Albright (2012) [3].

Gamma band coherence are shown to be associated with voluntary eye move-

ments, saccades [9]. Besides, stimulus selection by attention also induces local
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gamma band synchronization [55]. Our results show enhanced gamma coher-

ence (positive cluster) at all AV lags. Considering the increased gaze fixation

at mouth during /ta/ perception, heightened gamma coherence reflects the re-

cruitment of the visual attention areas. A recent review proposes that gamma

band (30–90 Hz) coherence activates postsynaptic neurons effectively by mod-

ulating the excitation such that it escapes the following inhibition [43]. Besides

rendering effective communication, gamma coherence has also been proposed

to render communication that are precise and selective [22, 43]. Importantly,

gamma band coherence has also been demonstrated to be implicated in asso-

ciative learning [93]. Thus, our observation of enhanced coherence exclusively

at gamma and desynchronization at alpha and beta-bands during 0 ms AV lag

portrays an attention network working in harmony with the NCNs most likely

linked to associative memory retrieval. This conjecture is also supported by

the secondary evidence in case of 450 and 450 ms AV lags, where an additional

working memory process is competing for processing and integration of the

multisensory stimuli and leading to a broadband enhancement in global coher-

ence. A more detailed delineation of working memory processing and asso-

ciative memory recall needs to be carried out with other kinds of multisensory

stimuli and will be a major focus of our future endeavors.
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Multi-scale cortical representation
of cross-modal perception

3.1 Introduction

Combination of information from different senses enhances our perceptual and

response ability. For example, although speech perception is based on the pro-

cessing of the auditory signals, speech intelligibility can be influenced when

it is accompanied by the visual articulatory gestures of the speaker. This can

either result in enhancement of the auditory perception [53, 126] or modulate

it when accompanied with semantically-incongruent lip movements [90]. Nu-

merous research papers have explored the cortical correlates of multisensory

perception, and demonstrated the involvement of specific modules and dis-

tributed cortical networks. However, it remains unclear at what scales these

networks are engaged and what the most pertinent substrate is for represent-

ing the mechanism of multisensory perception.

The conventional view of sensory processing is that convergence and integra-

tion of information across different modalities occurs in specific cortical mod-

ules post extensive processing within sensory-specific subcortical and cortical

regions. However, evidence from recent studies shows that multisensory in-

tegration extends beyond modularity and suggests that multisensory conver-
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gence is considerably widespread in the brain [15, 23, 91]. Furthermore, even

the primary sensory areas have been claimed as a part of the emerging network

of multisensory regions [5, 15]. From the perspective of localization of function

via integration hypothesis [18, 56, 83, 91], it is fundamentally important to un-

derstand the network-level mechanisms at various spatiotemporal scales over

which multisensory information processing is represented.

Behavioral and neuroimaging studies in the domain of speech perception have

extensively used McGurk effect to gain insights on mechanism of audio–visual

(AV) integration and multisensory perception [47, 61, 63, 70, 78, 125, 131, 137].

During the McGurk effect, an auditory speech sound /ba/ superimposed onto

the visual lip movement of /ga/ gives rise to an illusory (cross-modal) percept

of /da/ [90]. A substantial amount of evidence employing the McGurk effect

demonstrates activation of specific cortical modules like the pSTS (posterior Su-

perior Temporal Sulcus) [61,98,99,117], frontal and parietal areas [61,122] being

responsible for the cross-modal perception. On the other hand, studies employ-

ing connectivity measures on functional imaging and electrophysiological data

primarily reveal interactions among cortical regions of interest [70] or charac-

terize the properties of the global network [78] endorsing the mechanism of

functional integration. However, to our knowledge no study has reported that

both mechanisms are operational on a putative data set along with their vari-

ability across trials. Therefore, investigating the interplay between the modular

components of an extended cortical network of multisensory regions concomi-

tantly with dynamic changes within the components would help us develop

a comprehensive account of underlying mechanisms involved in multisensory

perception. In the present study, we used an incongruent McGurk pair (audio

/pa/ superimposed on a video of the face articulating /ka/) to induce the cross-

modal percept /ta/. Further, we introduced a temporal asynchrony in the onset

of audio and visual events of the McGurk stimuli to diminish the rate of cross-

modal responses /ta/, in comparison to the unimodal response of /pa/, thus
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creating two perceptual categories which can be further studied from the per-

spective of integration and segregation of information processing in the brain

at different spatial scales. We observed the representation of dynamical infor-

mation processing at each spatial scale, the individual sensor level in EEG data

(using time series and spectro-temporal representations of sensor-level power)

and large-scale brain networks (using the imaginary coherence to extract the

between-sensor interactions), indicating that multi-scale representation of the

AV integration is pertinent for a comprehensive understanding of multisensory

speech processing.

3.2 Materials and Methods

3.2.1 Participants

Nineteen healthy volunteers (10 males and 9 females, in the range of 22–29

years of age; mean age 25, SD = 2) participated in the study. All participants

gave written informed consent, and they had no neurological or audiological

problems. They all had normal or corrected-to-normal vision and were right-

handed. The study was carried out following the ethical guidelines and prior

approval of the Institutional Review Board of the National Brain Research Cen-

tre, India. The data from four volunteers were not included in the study be-

cause they reported to hear only the auditory stimuli and did not perceive the

McGurk effect when audio–visual stimuli were incongruent.

3.2.2 Stimuli and Trials

Stimuli

Each participant responded to 360 trials which consisted of videos of a native

Hindi-speaking male articulating the syllables /ka/ and /ta/ (see Figure 3.1).

One-fourth (90 trials) of the trials consisted of congruent video (visual /ta/ au-
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ditory /ta/). The remaining three-fourths of the trials comprised incongruent

videos (visual /ka/ auditory /pa/) presented with AV lags: 450 ms (audio leads

the articulation), 0 ms (synchronous) and +450 ms (articulation leads the audio),

each encompassing one-fourth of the overall trials. The audio syllable was ex-

tracted from a video of the speaker articulating /pa/ using the software Audac-

ity (https://www.audacityteam.org). Subsequently, the extracted audio sylla-

ble was superimposed onto the muted video of the speaker articulating the syl-

lable /ka/ using the software Videopad Editor (https://www.nchsoftware.com).

The stimuli were rendered into a 800 600 pixels movie with a digitization rate

of 29.97 frames per second. Stereo soundtracks were digitized at 48 kHz with

32 bit resolution. Presentation software (Neurobehavioral System Inc.) was

used to present the stimuli using a 17 LED monitor. Sound was delivered using

sound tubes at an overall intensity of 60 dB.

Experimental Design

The experiment was divided into three blocks. Each block consisted of 120 trials

comprising four kinds of videos (30 trials of each): a congruent video and the

three incongruent McGurk pair videos with AV lags. Inter-stimulus intervals

were pseudo-randomly varied between 1200 ms and 2800 ms to minimize ex-

pectancy effects. The subjects were instructed to report what they heard while

watching the speaker using a set of three keys: /pa/, /ta/ or ‘anything else’.

The subjects also performed a behavioral task post EEG scan. The task con-

sisted of 60 trials, comprising 30 trials of the auditory syllables /ta/ and /pa/

each. The subjects were instructed to report what they heard using the choices

/ta/ and /pa/.
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Figure 3.1: Stimuli: Each condition represents a video of speaker articulating
a speech sound. AV lags show the temporally incongruent placement of the
audio /pa/ with respect to the articulation (lip movement) of /ka/. The con-
gruent /ta/ represents a video with audio /ta/ dubbed onto a video of a person
articulating /ta/.

3.2.3 Data Acquisition and Analysis

EEG

Continuous EEG scans were acquired using a Neuroscan system (Synamps2,

Compumedics, Inc.) with 64 Ag/AgCl scalp electrodes sintered on an elastic

cap in a 10–20 montage. Recordings were made against a centroid (Cz) refer-

ence and digitized at a sampling rate of 1000 Hz. Channel impedances were

kept at values < 5 kΩ.

Preprocessing of EEG Signals

The EEG data acquired was initially re-referenced to linked mastoids and fil-

tered using a bandpass of 0.2–45 Hz. Subsequently, the continuous EEG was
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divided into epochs (400 ms to 900 ms surrounding the onset of the first stimu-

lus, i.e., the sound or articulation) and sorted based on the responses, /ta/, /pa/

and ‘other’, respectively. Epochs were baseline-corrected by removing the tem-

poral mean of the EEG signal on an epoch-by-epoch basis. Subsequently, we

performed artifact rejection to eliminate the response contamination from ocu-

lar and muscle-related activities. However, depending on the analysis, we used

two different thresholds. For statistical analysis of the event-related potentials,

to minimize false positives arising from high amplitude in the low-frequency

waveforms, epochs with a maximum signal amplitude above 50µV or a mini-

mum below 50µV were removed from all electrodes. For spectral and network

analysis, we used a signal amplitude threshold of ±100µV for artifact rejection

as amplitude differences in waveforms will have no relevance in the spectral

domain.

Event-Related Potential (ERP) Analysis

The preprocessed EEG data were further sorted according to the responses us-

ing customized MATLAB codes. After pooling across all subjects, the ERPs for

each condition contained a minimum of 128 trials, were averaged and plotted

across all electrodes. As we specifically focused on the difference in the ERP

pattern between the /ta/ and /pa/ responses, the sorted epochs for each stim-

ulus condition were compared statistically. Ms-by-ms paired t-tests were per-

formed between the /ta/ and /pa/ responses across all electrodes to evaluate

the spatio-temporal properties of AV integration. For each scalp electrode, the

first time point where the t-test yielded a p-value < 0.05 and continued to do

so for at least 20 consecutive data points (20 ms) was considered significantly

different. The method serves as an alternative to Bonferroni correction for mul-

tiple comparisons, which would increase the possibility of false negatives [97].
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Spectral Analysis

A time–frequency spectrogram of EEG signals at each electrode was computed

on a single-trial basis and sorted based on the responses, /ta/, /pa/ and ‘other’,

respectively. We computed the spectral power at different frequencies over

time using customized MATLAB (https://www.mathworks.com) codes and

the Chronux toolbox (https://www.chronux.org). The time bandwidth prod-

uct and the number of tapers were set at 3 and 5, respectively, and a fixed

time window of 0.3 s was applied while using the Chronux function mtspec-

gramc.m to compute the time–frequency spectrogram of the sorted time series

in EEG data. The time–frequency spectrogram computed for the perceptual cat-

egories /ta/ and /pa/ were compared channel by channel employing cluster-

based permutation tests [87]. During the cluster-based permutation tests, 1000

iterations of trial randomization were carried out to generate the permutation

distribution at a frequency band at a time point. Subsequently, a two-tailed

test with a threshold of 0.025 was used to evaluate the positive (increased spec-

tral power) and negative (decreased spectral power) clusters at the respective

sensors.

Network Analysis

To comprehend the cortico-cortical interactions underlying AV integration, we

assessed the imaginary component of pairwise sensor-level coherence intro-

duced by Nolte and colleagues [101]. This functional connectivity estimate cap-

tures the ‘true’ brain interactions that occur with a certain time lag, neglecting

the spurious interactions arising from common references, volume conduction

and crosstalk. Imaginary coherence refers to the complex part of the coherency

Cij that quantifies the phase relationship between two time series x̂i(t) and x̂j(t)

at a specific frequency f . Coherency Cij( f ) is the normalized cross-spectrum

between two signal pairs, which in the current study are the EEG signals from
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different sensor pairs i and j .

Cij( f ) =
Sij( f )√

SiiSjj
(3.1)

where Sij is the cross-spectrum obtained by performing the complex conjugate

of the Fourier transforms of x̂i(t) and x̂j(t). Imaginary coherence was evalu-

ated in the time window of 0.9 s post the onset of the first stimulus (audio or

visual) for each perceptual category (/ta/ and /pa/) at all the AV lags. We em-

ployed the Chronux function crossSpecMatc.m to obtain the normalized cross-

spectral matrix for all sensor combinations. Subsequently, we extracted the

imaginary part of the cross-spectral values that constitute the imaginary coher-

ence. The values of the imaginary coherence in the three frequency bands (al-

pha, beta and gamma) were further averaged using the Circular statistics func-

tion circ_mean.m. Imaginary coherence computed for /ta/ and /pa/ responses

were further compared between each channel pair for significant difference at

different frequency bands (alpha, beta and gamma) explicitly by means of the

cluster-based permutation test [87]. For each channel pair, the imaginary co-

herence difference between /ta/ and /pa/ was evaluated using the Fisher’s Z

transformation

Z( f ) =
tanh−1(C1( f ))− tanh−1(C2( f ))− ( 1

2m1−2 −
1

2m2−2)! )√
1

2m1−2 +
1

2m2−2

(3.2)

where 2m1, 2m2 = degrees of freedom; Z( f ) ≈ N(0, 1) a unit normal distribu-

tion; and C1 and C2 are the coherences at frequency f .

The coherence Z-statistic matrix obtained from the above computation formed

the observed Z-statistics. Consequently, 1000 iterations of trial randomization

were carried out to generate the permutation distribution at a frequency band
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for each channel pair. Subsequently, a two-tailed test with a threshold of 0.001

was used to evaluate the channel pairs that showed significantly different inter-

actions between the two perceptual categories. The same statistical tests were

carried out to test the differences at different AV lags.

3.3 Results

3.3.1 Behavior

We converted the behavioral responses corresponding to McGurk stimuli with

the AV lags to percentage measures for each perceptual category (/pa/, /ta/ or

‘other’) from all subjects using customized Matlab codes. To qualify a partici-

pant as an illusory (cross-modal) perceiver, we set a minimum threshold of 60%

of /ta/ response in any AV lag, 450, 0 and +450 ms. Fifteen participants quali-

fied and four participants failed to perceive above the set threshold. Data from

only 15 perceivers were used for further group-level analysis. We observed

that a maximum percentage of illusory (/ta/) responses occurred at 0 ms AV lag

(Figure 3.2). The percentage of /pa/ responses was also at minimum at 0 ms AV

lag. We ran a repeated-measures two-way ANOVA on the percentage responses

with AV lags and the perceptual categories (/ta/ and /pa/) as the variables. We

observed that there was no influence of AV lags in the percentage of responses

of /ta/ and /pa/ [F(2,89) = 0.84, p = 0.44]. However, we found a significant

difference in the percentage responses between the two perceptual categories

[F(1,89) = 19.46, p < 0.0001]. Also, the interaction between perceptual catego-

rization and AV lags was significant [F(2,89) = 23.83, p < 0.0001]. Furthermore,

we performed a post-hoc test using the Scheffe method on the perceptual cat-

egories. We observed a significant difference in the percentage responses be-

tween the two perceptual categories at the 95% confidence level. We also per-

formed a paired Student’s t-test on the percentage of responses (/ta/ and /pa/)

44



Chapter 3. Multi-scale cortical representation of cross-modal perception

−450 0 +450
0

20

40

60

80

 

 

  /ta/

  /pa/

  Other

  AV lags (ms)

%
 R

e
s
p

o
n

s
e

s

Figure 2

Figure 3.2: Behavior: Percentage of perceptual categorization for /pa/, /ta/
and ‘other’ percepts as a function of AV lags, normalized and grouped over all
15 perceivers. The error bars represent 95% confidence interval.

at each AV lag. Insignificant differences of 10.20% and 11.40% were observed

between /ta/ and /pa/responses at 450 ms AV lag [t(14) = 0.63, p = 0.27] and

+450 ms AV lag [t(14) = 0.45, p = 0.67], respectively. However, at 0 ms AV lag

we observed that the percentage of /ta/ responses was significantly higher by

36.58% than the percentage of /pa/ responses [t(14) = 10.20, p < 0.0001]. The

hit rate of /ta/ responses during congruent /ta/ was observed to be 0.97. Also,

the hit rate of /ta/ and /pa/ during auditory-alone conditions was observed to

be 0.96 and 0.98, respectively.

3.3.2 Event-Related Activity

The difference wave obtained by subtracting the event-related responses of

/pa/ from the responses of /ta/ (/ta/ − /pa/) for the AV lags 450 ms, 0 ms
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Figure 3.3: Event-Related Potential:(A) The difference wave between ERPs
sorted out from /ta/ and /pa/ response trials at 450 ms, 0 ms and +450 ms
AV lag. The topoplot at the top left displays the color code used for plotting
ERPs assigned to respective scalp channel locations. For example, the green
and red positive peaks around 300 ms represent the peak of activity in the left
frontal and right frontal sensors. (B) Statistical cluster plots of the difference be-
tween the perceptual categories (/ta/ and /pa/) for each stimulus. The clusters
indicate the time points where the p-values were < 0.05 for more than 20 ms.
General sensor positions are arranged from frontal to posterior regions (bottom
to top).

and +450 ms at all scalp electrodes are shown in Fig. 3A. In the difference wave,

we observed a positive peak between 300–380 ms in frontal-polar, frontal and

centro-parietal sensors at 450 ms AV lag and in frontal-polar, central, temporal,

centro-parietal and parieto-occipital sensors at 0 ms AV lag, respectively. How-

ever, we did not observe any such peaks in the difference wave at +450 ms AV

lag.

To compute the sensors eliciting significantly different amplitude during /ta/

responses than /pa/ responses, we performed millisecond-by-millisecond t-
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tests between the two conditions. To ignore transient responses, the criteria

for significance were chosen such that at the onset latency the first point in the

time series was where the p-value was less than 0.05 and remained so for at

least 20 ms consecutively. The cluster plots in Figure 3B exhibit such temporal

windows. At 450 ms AV lag we observed a difference in the frontal and central

sensors at 370 ms followed by which we observed a difference in the temporal,

centro-parietal, parieto-occipital and occipital sensors ranging from

3.3.3 Power of Oscillatory Activity

The relative difference in the time–frequency spectrogram between /ta/ and

/pa/ responses (/ta//pa/) at each sensor obtained after the cluster-based per-

mutation test is shown in Figure 3.4. Figures 3.4A, B and C plot the differences

in the spectral power between /ta/ and /pa/ responses at 450 ms, 0 ms and

+450 AV lag, respectively. At 450 ms AV lag, we observed negative clusters

predominantly in the theta and alpha bands denoting a decrease in the spectral

power in the left frontal, left temporal and bilateral occipital sensors. How-

ever, at 0 ms AV lag we observed positive clusters, denoting an increase in the

spectral power in the theta and alpha frequency bands predominantly in the

occipital sensors and left temporo-parietal and right centro-parietal sensors in

addition to suppression of alpha and theta power in left frontal areas. At +450

ms AV lag, we observed a bilateral decrease in the spectral power in the frontal

and temporal sensors. On the left frontal and temporal sensors, negative clus-

ters were observed in the theta, alpha, beta and the gamma bands. However, in

the right temporal sensors negative clusters were observed in the theta bands.
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Figure 3.4: Power spectral analysis: Time–frequency spectrogram difference at
each sensor time locked to the onset of the first stimulus (400 ms pre-stimulus
and 900 ms post stimulus): (A) 450 ms AV lag, (B) 0 ms AV lag and (C) +450
ms AV lag. The red and black dotted boxes represent the areas in the respective
sensors that exhibit a significant difference between the perceptual categories
(/ta/ and /pa/). Panel (D) represents an enlargement of the spectrogram at
each sensor showing islands of increased and decreased power.
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Figure 3.5: Functional connectivity changes: Imaginary coherence difference
between /ta/ and /pa/ response trials. Dots indicate the channel location and
the lines indicate channel pairs with statistically significant (p < 0.001) imagi-
nary coherence changes at different frequency bands as indicated by the color
codes in the top right at (A) 450 ms, (B) 0 ms, and (C) +450 ms AV lags.

.

3.3.4 Functional Connectivity

To assess the functional connectivity underlying AV integration, we non- para-

metrically compared the imaginary coherence between (/ta/) and unisensory

(/pa/) responses from all the pairwise sensor combinations. At 0 ms AV lag

(Figure 5B), significant differences in the connectivity were observed in the al-

pha band bilaterally between frontal-parietal sensors, unilateral right frontal-

temporal, frontal-occipital temporal and temporal-occipital sensors; in the beta

band between left frontal-temporal and right frontal-parietal sensors; in the

gamma band between bilateral frontal-parietal and frontal-temporal sensors,

right frontal-occipital, temporal-parietal and parietal-occipetal sensors. At +450

ms AV lag (Figure 5C), significant differences in interaction were observed in

the beta band between left temporal-parietal, temporal-occipital and among oc-

cipital sensors; in the gamma band among left frontal sensors and among right
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occipital sensors.

3.4 Discussion

In the present study, we used EEG to investigate the spatiotemporal struc-

ture of cortical activity underlying multisensory speech perception. We ex-

ploited the trial-by-trial variability in the perception of McGurk stimuli to iden-

tify the neural representation of multisensory speech perception at different

scales. We compared the neural correlates of unisensory and cross-modal per-

ception using identical stimuli at the ERP, spectral and large-scale functional

network level. Thus, we could capture the trial-by-trial variability of a partic-

ipant as well as the segregation-based information-processing mechanisms at

the individual sensor level (from ERP, spectral methods) and integration-based

information-processing mechanisms (using imaginary coherence) in one single

study. The main findings of the study are: (1) A positive peak in the latency

range of 300–400 ms serves as a temporal marker of AV integration; (2) de-

creased post stimulus theta (4–7 Hz), alpha (8–12 Hz) and beta (13–30 Hz)band

activity across frontal, temporal sensors and enhanced theta and alpha band

activity across occipital sensors act as a spectral signature for cross-modal per-

ception; (3) enhanced functional connectedness at the gamma band with the

frontal sensors is pivotal for cross-modal perception.

Previous studies have shown that by presenting certain semantically-incongruent

AV stimuli, one can induce an illusory (cross-modal) perceptual experience in

the participants [84, 90, 132]. In the current study, we constructed incongruent

AV stimuli by superimposing auditory /pa/ onto video of the speaker articu-

lating /ka/ to induce an illusory percept of /ta/. Furthermore, studies have

also demonstrated that the illusory experience can be modulated by the intro-

duction of AV lags [96, 132]. Therefore we introduced an AV lag of 450 ms to

our incongruent AV stimuli to generate three conditions overall: 450 ms (audio
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preceding video), 0 ms (synchronous onsets of audio and video) and +450 ms

(video preceding audio) AV lag. We observed that the stability of the illusory

percept varied with the introduction of the AV lags. Synchronous AV stimuli re-

sulted in a response of illusory perception that was stable and at a significantly

higher frequency of occurrence than the unisensory percept /pa/, whereas AV

lags of 450 ms and +450 ms resulted in lowering of the illusory percept and a

higher occurrence of the unisensory percept /pa/. Additionally, we observed a

hit rate of /ta/ responses above 90% for congruent /ta/ stimuli and above 95%

during our post-hoc ‘auditory alone’ behavioral experiment. Our behavioral

response results corroborate existing studies of the McGurk effect [96, 132] that

demonstrate the effect of AV lags on perception. Furthermore, variability in

the perception of identical incongruent stimuli served as an efficient handle to

compare and understand the processing of multisensory speech stimuli [129].

Segregation of Information Processing Underlying Illusory Perception

Timing of Neural Information Processing

Converging evidence suggests that conscious perception is marked by a higher

P300 component [106,109,113]. Our results demonstrate a robust positive peak

in the temporal window of 300–400 ms as seen in the ERP difference plot (Figure

3A) at 450 ms and 0 ms AV lags. The results are further validated by cluster

plots of ERPs obtained from millisecond-by-millisecond paired t-tests (Figure

3B) between /ta/ and /pa/ at all the AV lags. Although no robust peak around

300 ms was observed during +450 ms AV lag, cluster plots demonstrate a dif-

ference across central, temporal, centro-parietal and occipital sensors around

300 ms post stimulus onset. Importantly, significant differences in the ERP start

only post 300 ms stimulus onset at 450 ms and 0 ms. In addition, interestingly

the difference persists longer at 450 AV lag than at 0 ms AV lag, where the

difference was observed in most sensors closely around the 300 ms window.

We attribute the persistence of difference beyond 300 ms at 450 AV lag to the
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neurophysiological processes involved in binding the information across the

two modalities. Considering the asynchronous AV stimuli, one can hypothe-

size that the neurophysiological process is the working memory that holds the

first incoming stimulus (audio or visual) before integrating with the upcoming

stimulus. Behavioral studies by Van Wassenhove and colleagues [132] demon-

strate 200 ms of asynchrony as the temporal window of AV integration. How-

ever, electrophysiological studies understanding preparatory processes show

the elicitation of ERP components upto 600–800 ms in response to a cue fol-

lowed by a target stimulus [121]. In light of this finding we can endorse our

speculation of the persistent difference post 300 ms at 450 AV lag arising from

the underlying binding processes. The smaller difference window observed at

0 ms AV lag indicates an integration mechanism that is distinct from the pro-

cessing when the AV stimuli are time-lagged. These mechanisms can be under-

stood further by inspecting the signals at different scales. Furthermore, we also

observe a difference before 300 ms, primarily at the central and parietal elec-

trodes at +450 ms AV lag. These might arise from the anticipatory processes

trying to predict the auditory representation following articulatory cues. Our

findings here primarily point to the P300 component as the temporal marker of

cross-modal perception.

Spectro-Temporal Structure of Brain Rhythms at Each Sensor

Oscillatory cortical activity modulates and drives perception [133]. Non-parametric

statistical comparison of the time–frequency spectrogram between the percep-

tual categories (/ta/ - /pa/) (Figure 3.4) highlights the durations and frequen-

cies at each sensor that have significantly different signal power change. The

patterns of spectral difference allow us to speculate on the mechanism of AV

integration which we discuss in the following paragraph. At 450 AV lag, we ob-

served a suppression in the theta and alpha bands primarily in the frontal, left-

temporal and occipital sensors. Similarly, at +450 ms AV lag, we observed a bi-

lateral suppression of spectral power in the frontal and temporal sensors in the
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theta, alpha, beta and gamma bands. Theta band activity has been implicated in

the encoding of new information and retrieval of episodic memories [75, 102].

Furthermore, suppression of alpha band power has been implicated in atten-

tion and language comprehension processes by enabling controlled access to

knowledge [10,51,54,76,105,120]. From an information processing perspective,

event-related desynchronization in a local area indicates the onset of prepara-

tory processes [54]. Also, differences across the sensors might reflect the activity

in the underlying sensory-specific and working memory areas endorsing the

fuzzy logical model of perception, in which each input is first independently

evaluated with prototypes stored in memory followed by its integration and

perception [89]. Our claim arises in the first place from the nature of the stimuli

(450 ms and +450 ms AV lag) as in both cases either the audio /pa/ precedes

the articulation or vice-versa. Furthermore, suppression of beta band power

has been implicated in top-down control of attention [39]. Additionally, gamma

band oscillations have been associated with visual perception, attention and the

processing of auditory and spatial information [62, 65]. Therefore, the suppres-

sion in the beta and gamma bands observed in the left temporal sensors at +450

ms AV lag might be associated with the attention network guiding the percep-

tual processing. Interestingly, at 0 ms AV lag, we observed a difference in the

spectral power predominantly in the occipital sensors followed by the frontal

and temporal sensors. We observed enhanced theta and alpha band activity

in the occipital sensors; however, we observed suppression in those bands in

the frontal and left temporal sensors. Here, a plausible hypothesis behind the

emergence of cross-modal perception is the engagement of associative memory

networks aided by the synchronous presentation of visual stimuli that integrate

the well-learnt audio–visual cues [3].
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Integration of Information Underlying Multisensory Perception

To gain insight into the integration of information that occurs in the functional

network that disambiguates the two perceptual states, we evaluated the varia-

tion in the coherence of ongoing oscillatory activity. In an earlier study [78], we

showed evidence of a global network being operational during multisensory

perception. However, the local sub-networks giving rise to such large-scale in-

teractions were unknown as the real part of coherency is susceptible to volume

conduction effects. In the current article, we focus our analysis on the complex

part of the coherency, i.e., the imaginary coherence, because this measure is sen-

sitive only to synchronization of two processes that occur with a time lag and

are minimally affected by volume conduction [101]. Also, it reduces the false

positive estimates of interactions existent in functional connectivity measures

such as absolute coherence and phase synchrony [49].

Upon non-parametric comparison of the imaginary coherence of /ta/ and/pa/

responses, we observed an enhanced functional connectivity in the alpha band

at 450 ms AV lag among the parietal-temporal-occipital sensors and at 0 ms AV

lag among bilateral frontal-parietal-temporal and occipital sensors. However,

at +450 ms AV lag we did not observe any significant difference in the func-

tional connectivity at the alpha band between the /ta/ and /pa/ responses.

Thalamo-cortical and cortico-cortical interactions are thought to be the genera-

tors of the human alpha rhythms, with the magnitude of the alpha coherence

dependent on the frequency selectivity of the underlying network and the sim-

ilarity of the inputs. Besides, alpha band synchronization has been associated

with short term attentional processes [72]. Therefore, in the light of the afore-

mentioned studies, the enhanced functional connectivity observed at 0 ms AV

lag can be attributed to the attentional network. In addition, at 0 ms AV lag, the

AV inputs being synchronous, the enhanced connectivity also reflects the pro-

cesses involved in scrutinizing the congruency of the AV inputs. At 450 ms AV

lag the difference in the connectivity alerts the short-term attentional network
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operating to integrate the auditory information to the upcoming visual infor-

mation. However, as auditory processing is faster than the visual [58, 119], at

+450 ms AV lag, the temporal lag makes time available for the visual processing

of the lip movement and therefore we do not observe an enhanced connectivity

emerging from the short-term attentional processes.

Inter-areal coherence of oscillatory activity in the beta frequency range (15– 30

Hz) has been has been implicated in top-down processing [139]. Furthermore,

promoted by the dense anatomical connectivity, the neurons self-organize them-

selves into large-scale neuronal assemblies called neuro-cognitive networks (NCN),

in reaction to the cognitive demands [20]. In this context, the increased inter-

action we observed between the temporal-parietal, bilateral temporal-parietal

and temporal-occipital sensors at 450 ms (Figure 3.5A), 0 ms (Figure 3.5B) and

+450 ms AV lag (Figure 3.5C), respectively, provides a long-range inter-areal

linkage of distributed cortical areas in NCNs. These also enable the processing

of the retrieval of well learnt audio–visual associations as suggested by Albright

and colleagues [3].

Enhanced functional connectivity, primarily between the frontal and parietal

sensors in the gamma band, was observed at all AV lags. Ther fronto-parietal

network has been shown to selectively bias the processing of lower-order sen-

sory systems [27]. Besides, gamma band coherence has been shown to be impli-

cated in voluntary eye movements, saccades and linguistic processing [9, 108].

Stimulus selection by attention also induces local gamma band synchroniza-

tion [55]. Furthermore, our gaze fixation results on the current data reported

in Kumar et al. (2016) [78] show enhanced gaze fixation on the mouth during

/ta/ perception. Combining these data, we hypothesize that selective atten-

tion paid to the mouth is the result of a top-down interaction that governs the

perceptual processing. Most interestingly, the enhanced functional connectivity

(slightly more extensive in right hemisphere) between fronto-temporal, fronto-

parietal and fronto-occipital sensors signifies an increase in crosstalk between
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visual association areas and multisensory and integrative centers of the brain

when AV information is synchronous. On the other hand, during the presen-

tation of asynchronous AV stimuli at 450 ms, a more left-hemisphere-dominant

network is operational, presumably due to the presence of pseudo-linguistic

stimuli (/pa/-/ka/-/ta/). From the perspective of predictive coding [115, 127],

one can infer that the prediction error and the internal representation of the

brain can be updated within a small temporal window to process the incom-

ing incongruent AV stimulus. Future studies can explore the boundaries of the

temporal windows over which predictive coding is possible.

Overall, we present a multi-scale representation of multisensory speech pro-

cessing. Although we observe markers at the individual sensor level, our re-

sults indicate that a comprehensive account of underlying neural processes

emerges only when one analyzes the physiological signals at multiple scales.

In the current study, due to the nature of the stimuli we were not able compare

between temporal lags. However, future studies can explore such lags at the

source level to build a complete picture of multisensory speech processing.
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Oscillatory cortical networks
underlying inter-individual and
inter-trial heterogeneity during
cross-modal speech perception

4.1 Introduction

Speech perception during face-to-face conversation inextricably involves mul-

tisensory integration of auditory and visual cues. This is nicely demonstrated

in laboratory settings by the McGurk effect [90], in which the video stimulus

of a human speaker with the sound of /ba/ superimposed on the lip move-

ments /ga/ is perceived by the listener as a completely different syllable /da/

(illusory/ cross-modal percept). Subsequently, several studies have identified

the psychophysical parameters that play a dominant role in generating cross-

modal effects [96, 129, 132] and their underlying neural correlates [12, 61, 63,

70, 110, 114, 131]. Nonetheless, the distribution of responses to McGurk stim-

ulus is heterogeneous and some individuals rarely perceive the illusion [99].

While the neural correlates underlying illusory/ cross-modal perception has

been extensively studied in a group of McGurk perceivers, the electrophsiolog-

ical evidences in terms of large-scale brain networks underlying the perceptual
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heterogeneity is unknown.

Recent evidences show that subject-wise variability in the illusory perception

is contingent on the McGurk stimulus and the response choice employed in the

experimental paradigm [86]. Concurrently, neuroimaging evidences attribute

the heterogeneity across individuals to the extent of activation at the superior

temporal sulcus (STS) [12, 99]. Neurophysiological studies highlight the pre-

stimulus activity in STS and its functional connectedness to front-parietal re-

gions as a viable neuromarker of illusory perception within a group of individ-

uals [70]. Converging evidences have indicated that beyond a specific region

of interest, networks of brain regions facilitate perceptual processing. In this

perspective, a recent review suggests neuronal oscillations as a key substrate

of neuronal information processing that needs to be fully explored to answer

the individual’s perceptual experience. A recent study has also indicated that

a large-scale network of oscillatory brain networks are involved in effectuating

cross-modal perception [79]. A key question emerges, how robust is this net-

work across a group of individuals and whether the organization of such net-

works is contingent on the stimulus configurations or the perceptual outcome,

specifically in the case of McGurk incongruent stimulus.

It is well known that robust oscillations observed from macroscopic record-

ings such as EEG/MEG are an outcome of network interactions among local

subpopulations of excitatory and inhibitory neurons. Empirically such inter-

actions result in global coherence dynamics observed by earlier studies such

as Kumar et al. [78]. In the current study, exploiting the perceptual variabil-

ity within and across the individuals, we demonstrate how distinct coherence

patterns become the hallmark of category-specific (inter-trial) and individual-

specific (inter-individual) perceptual experience.
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4.2 Materials and Methods

4.2.1 Participants

Eighteen healthy right handed volunteers (10 males, 8 females, mean age = 24.9,

SD = 2.8) gave written informed consent under an experimental protocol ap-

proved by the Institutional Human Ethics Committee of the National Brain Re-

search Centre, Gurgaon which is in agreement with the Declaration of Helsinki.

4.2.2 Stimuli and Trials

A digital video of a native Hindi speaking male articulating the syllables /pa/,

/ka/ and /ta/ was recorded and edited using – the audio editing software Au-

dacity (https://www.audacityteam.org) and the video editing software Videopad

Editor (https://www.nchsoftware.com). The duration of each video clip ranged

from 1.5 to 1.7 seconds to include the neutral, mouth closed position and all the

mouth movements of articulation to closing. The duration of auditory syllables

in the videos ranged from 0.4 to 0.5 seconds. The stimuli (Fig. 1) consisted

of four kinds of videos: three congruent (auditory and visual matching) syl-

lables (/pa/, /ka/, /ta/) and one McGurk/incongruent (auditory and visual

mismatch) syllable (auditory /pa/ + visual /ka/) producing the McGurk per-

cept of /ta/ or /tha/.

The experiment contained five blocks – each block consisting 120 trials (30 tri-

als of each video presented in random). Inter-stimulus intervals were pseudo-

randomly varied between 1200 ms and 2800 ms to minimize expectancy effects.

Using a forced choice task, on every trial, participants reported their percept by

pressing a specified key on the keyboard corresponding to /pa/, /ka/, /ta/ or

something else (others) while watching the videos.
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Figure 4.1: Stimuli: (A) Example trial with 3 video frames from McGurk stim-
ulus (audio /pa/ + video /ka/) used in this experiment (top row), the audio
trace of the syllable /pa/ presented simultaneously to the video (middle row)
and the onset and offset time of the audio. (B)The congruent AV stimuli : each
block represents a video with audio /pa/, /ta/ and /ka/ dubbed onto a video
of a person articulating /pa/, /ta/ and /ka/ respectively.

.
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4.2.3 Data acquisition and Analysis

EEG

Continuous EEG scans were acquired using a Neuroscan system (Synamps2,

Compumedics, Inc.) with 64 Ag/AgCl scalp electrodes sintered on an elastic

cap in a 10-20 montage. Individual electrode locations were registered using the

Fastrak 3D digitizing system (Polhemus Inc.). Recordings were made against

the centre (near Cz) reference electrode on the Neuroscan cap and digitized at a

sampling rate of 1000 Hz. Channel impedances were monitored to be at values

< 10 kΩ.

Preprocessing

Preprocessing and off-line data analysis were performed using EEGLAB [31],

Fieldtrip [104], and custom made MATLAB scripts (The MathWorks, Natick,

MA). Continuous data were high-pass [0.1 Hz, finite impulse response (FIR)],

low-pass (80 Hz, FIR), and notch filtered (45–55 Hz, 9th-order 2-pass Butter-

worth filter). The noisy channels were removed and the data was re-referenced.

For the data analysis, epochs of 0.8s were post the onset of the sound were

extracted and sorted based on the stimuli (congruent AV stimuli: /ta/, /pa/,

/ka/ and incongruent McGurk stimulus) and responses (/ta/, /pa/ and ’oth-

ers’). The sorted epochs were then baseline corrected by removing the temporal

mean of the EEG signal 200 ms before the onset of sound on an epoch-by-epoch

basis. Finally, in order to remove the response contamination from ocular and

muscle-related artifacts, epochs with amplitudes above or below±75µV were

removed from all electrodes.

Network analysis

To investigate frequency specific functional connectivity (FC) that sub-serves

cross-modal perception and characterizes inter-trial and inter-individual dif-
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ferences, we computed global coherence. The techniques allows to capture

and quantify the strength of the covariation of neural oscillations at the global

scale [24, 78]. We employed the Chronux [94] function CrossSpecMatc.m to

obtain trial-wise global coherence of the epochs sorted based on stimuli and

responses. We considered 3 orthogonal discrete prolate spheroidal sequences

(dpss), also known as Slepian tapers, to avoid leakage of the spectral estimates

into nearby frequency bands. The time-bandwidth of 5 was taken that resulted

in a frequency bandwith of 0.25Hz. The output variable ’Ctot’ of the function

yields the global coherence value at frequency f . The function initially multi-

plies the epochs with the set specified number of Slepian tapers before perform-

ing fast-fourier transform (FFT). The resulting FFT values are averaged and the

cross-spectrum for all sensor combinations at frequency f are computed. The

cross-spectral density between between two sensors was computed from the

tapered fourier transforms using the following equation

Cij = conj(Xi( f ).Xj( f )) (4.1)

where, Cij represents the cross spectrum, Xi and Xi represent the tapered fourier

transforms from the sensors i and j. Subsequently, singular value decomposi-

tion (SVD) was applied on the cross-spectral density matrix for every frequency

f which yields the following

C( f ) = VCVT (4.2)

The diagonal matrix C comprises the values proportional to the variance ex-

plained by the orthogonal set of eigenvectors (V, VT). Finally, global coherence

CGlobal( f ) at frequency bin f was computed by normalizing largest eigenvalue

(first entry of the C( f ) at frequency f ) on a trial-by-trial basis for each partici-
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pant employing the following equation:

CGlobal( f ) =
C1( f )

∑n
i=1Ci( f )

(4.3)

The global coherence computed on a trail-by-trial basis was further sorted based

on the perceptual categories (/ta/ and /pa/) and averaged over all the partici-

pants and statistically compared.

We further analyzed if changes in global coherence values at specific frequency

bands (alpha: 8-13Hz, beta: 14-30Hz, gamma: 31-45Hz) correlated with the

participants’ susceptibility of McGurk perception. Participant-wise mean of the

global coherence in specific frequency bands were computed and were statisti-

cally analyzed using Spearman rank correlation and t-tests.

Source analysis

We employed dynamic imaging of coherent sources (DICS) [48]— a frequency-

domain adaptive spatial filtering algorithm - to identify the sources of the ef-

fects found in the frequency specific global coherence dynamics. This algorithm

has proven to be particularly powerful in localizing oscillatory sources. We

used Fieldtrip toolbox for localizing the sources. Firstly, ft_prepare_leadfeild.m

was used employing the Boundary Element Method (BEM) to generate the

leadfield matrix for each participant from their respective magnetic resonance

imaging (MRI) scans. The leadfield matrix corresponds to the tissue and geo-

metrical properties of the brain represented as discrete grids or voxels. Subse-

quently, we employed ft_freqanalysis.m to evaluate the participant-wise cross-

spectral matrices of the epochs as the adaptive spatial filters are constrained

by the covariance and leadfield matrices. These spatial filters regulate the am-

plitude of brain electrical activity passing from a specific location while atten-

uating activity originating at other locations. The distribution of the output
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amplitude of the spatial filters provides the metric for source localization. We

employed ft_sourceanalysis.m to compute the source activity in the grids spec-

ified by the spatial filters. However, in order to find the contrast activity against

the baseline conditon, we performed simaliar source analysis with pre-stimulus

time series and eventually computed the contrast activity using the following

formula

CContrast =
Pstim − Pprestim

Pprestim
(4.4)

where CContrast represent the source power at the respective grids, Pprestim and

Pstim represent the power at discrete grids in the leadfeild matrix during pre-

stimulus and stimulus. These source activity was interpolated onto individual

anatomical magnetic resonance imaging images using ft_sourceinterpolate.m

and subsequently normalized onto a standard Montreal Neurological Institute

(MNI) brain using ft_volumenormalize.m in order to calculate group statistics

and for illustrative purposes.

4.3 Results

4.3.1 Behavior

We employed the incongruent McGurk stimulus, visual /ka/ paired with au-

ditory /pa/ to induce the illusory response /ta/. We used four kinds of AV

stimuli: McGurk incongruent pair and congruent AV stimuli (/ta/, /pa/ and

/ka/). As the participants observed the four stimuli presented randomly, they

reported if they heard /ta/, /pa/, /ka/ or ’something else. We observed a high

degree of inter-individual variability in McGurk susceptibility (Figure 4.2A).

We classified the participants based on their McGurk susceptibility into two

groups - rare perceivers (<50% /ta/ percept) and frequent perceivers (>50%

/ta/ percept) for characterizing any attribute in the subsequent analysis that is
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AV stimulusFigure 4.2: Behavior: (A) Inter-individual variability - Propensity of McGurk
effect for each of the 18 participants expressed as the percentage of /ta/ per-
cept during the presentation of McGurk stimulus. The participants were cate-
gorized as frequent perceivers (blue diamonds, > 50%) and rare perceivers (red
diamonds, <=50%). (B) Inter-trial variability - Percentage of /ta/ (illusory) and
/pa/ (unisensory)percept during the presentation of McGurk stimulus and the
hit rate during the presentation of congruent AV stimuli(/pa/, /ta/ and /ka/)
averaged over all the participants.

associated with these two specific groups.
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In the analysis of inter-trail variability(response tendency), which was com-

puted as the relative proportion of illusory (/ta/) responses in all McGurk tri-

als across all participants, we found that participants reported a /ta/ percept

58.19% trials, whereas a unisensory /pa/ percept was reported in 37.56% trails.

Congruent AV stimuli (/pa/, /ta/ and /ka/) were correctly identified in 96.56%

trails. The difference between between the percentage of /ta/ and /pa/ percept

was not significant (t=1.92, degrees of freedom = 34, p = 0.06, for details, see Fig-

ure 4.2B).

4.3.2 Large-scale functional connectivity dynamics

Inter-Individual variability

We were interested in the influence of the dynamics of the oscillatory large-

scale functional connectivity on inter-individual differences in the perception of

McGurk effect. For this purpose, we divided our participants into two groups

based on their susceptibility of McGurk effect: rare perceivers (<50% /ta/ per-

cept) and frequent perceivers (>50% /ta/ percept). It specifically allowed us

to interogate if inter-individual heterogeneity stems from the differences in the

inherent processing of multisensory stimuli in the two groups of perceivers.

We computed the time-averaged global coherence on the epochs during McGurk

stimulus. We observed that rare perceivers elicited an enhanced global co-

herence than frequent perceivers in theta, alpha and beta bands. Frequent

perceivers, however, were characterized by enhanced global coherence in the

gamma band (Figure 4.3A). Interestingly, across all participants, a significant

negative correlation was observed only between each participant’s alpha band

global coherence and and their propensity of experiencing the McGurk percept

(r=0.14, p=0.04) (Figure 4.3B).

Furthermore, to overrule the possibility of that negative correlation a result of

stimulus specific sensory processing and not necessarily from cross-modal as-
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Figure 4.3: Large scale functional connectivity dynamics : Inter-individual
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pects, we investigated the global coherence dynamics for congruent AV stim-

uli (/pa/, /ta/ and /ka/). We observed again that rare perceivers elicited an

enhancement of global coherence in the theta, alpha and beta band. And, fre-

quent perceivers were characterized by an enhanced gamma band global co-

herence (Figure 4.3C, E, G). Evidently, a significant negative correlation was

observed only between each participant’s alpha band global coherence and and

their propensity of experiencing the McGurk percept during congruent /ta/ AV

stimulus (r=0.16, p=0.03) (Figure 4.3F) and congruent /ka/ AV stimulus (r=0.18,

p=0.03) (Figure 4.3H). No such significant correlation was not observed during

congruent /pa/ AV stimulus (Figure 4.3D).

Inter-Trial variability

The time-averaged global coherence was computed on trials sorted based on

the perceptual categories (/ta/ and /pa/) over all the participants and com-

pared. We observed that /ta/ perception was characterized by a significant de-

crease in global coherence in alpha (t(8)=-4.72, p = 0.002) and beta band (t(30)=-

2.88, p = 0.007 ). However, we observed a significant increase in global coher-

ence in the gamma band between 40-45Hz (t(14)=11.47, p < 0.001) (Figure 4.4A).

Furthermore, we computed global coherence on the trials during congruent AV

stimuli (/pa/, /ta/ and /ka/) to understand if the differences observed between

the perceptual categories (/ta/ and /pa/) elicit large-scale neural substrate of

AV integration. No significant difference was observed in the global coherence

dynamics between the congruent AV stimuli (Figure 4.4B).
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Figure 4.4: Large scale functional connectivity dynamics : Inter-trial variabil-
ity (A) Time-averaged global coherence of trials during /ta/ (illusory) and /pa/
percept averaged across all the participants (B) Time-averaged global coherence
during congruent stimuli (/ta/, /pa/ and /ka/) averaged across all the partici-
pants.

4.3.3 Source analysis reveals cortical areas participating in func-

tional connectivity dynamics

We employed source analysis to identify the the possible cortical generators of

the global coherence dynamics that characterized inter-individual variability in

the perception of McGurk effect. Therefore, we primarily focused on identi-

fying the cortical sources of alpha band activity. Beamformer source analysis

(DICS, Gross et al. 2001) suggested the areas that contribute significantly are

illustrated in figure 4.5. Interestingly, we observed that the source locations

were consistent for McGurk stimulus and congruent AV stimuli. The cortical

locations that showed significant activations listed in table 4.1.
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Figure 4.5: Cortical sources : Cortical sources underlying alpha band oscilla-
tions identified using DICS beamformer algorithm from the sensor time series.
The sources eliciting power higher than the set threshold (>99.5 percentile) are
highlighted.

Table 4.1: Cortical loci eliciting power higher than the set threshold (> 99.5
percentile) in the source analysis

Left hemisphere Right hemisphere
Frontal lobe Middle frontal gyrus Middle frontal gyrus

Superior frontal gyrus Superior frontal gyrus
Temporal lobe Fusiform gyrus Fusiform gyrus

Middle temporal gyrus
posterior Superior temporal gyrus

Parietal lobe Precuneus

4.4 Discussion

An ongoing challenge in multisensory speech perception is to accurately iden-

tify and characterize the possible neural mechanisms that govern the perceptual

variability across individuals and trials. Traditionally studies have focused on

identifying the neural correlates in terms of candidate brain regions or region of

interest specific interactions that are responsible for the observed heterogene-

ity [61]. A more emerging understanding suggest the existence of networks of

brain regions facilitating perceptual processing [13]. Neuronal oscillations has
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been identified as a key substrate of neuronal information processing that needs

to be fully explored to answer the individual’s perceptual experience [70,71,78].

Robust oscillations observed from macroscopic recordings such as EEG/ MEG

are an outcome of network interactions among local subpopulations of excita-

tory and inhibitory neurons [14, 30, 143]. Empirically such interactions result

in global coherence dynamics [78, 79] . The present study demonstrates how

distinct coherence patterns correlate with inter-trial and inter-individual het-

erogeneity.

The key empirical observations in our study are: 1) The susceptibility of an in-

dividual’s McGurk effect is negatively correlated to their respective alpha band

global coherence, indicating desynchronization of large-scale neural assemblies

in the alpha band with increasing propensity to perceive the effect 2) McGurk

effect (cross-modal perception) is characterized by decreased alpha, beta and

enhanced gamma band coherence.

The most significant achievement of our study was to capture the network cor-

relates of inter-individual and inter-trial variability with the same measure of

global coherence. Notably, the presence of alpha band coherence was consis-

tent in the rare perceivers in McGurk and congruent AV stimuli (/pa/, /ta/

and /ka/). This emphasizes the role of synchronization of large-scale neural

assemblies in alpha band in effectuating variability in the inherent processing

of multisensory speech. Previous evidences accentuate the modulations in al-

pha band coherence to central executive processes [75, 116] that are postulated

to be involved in allocating working memory storage to phonological loop that

maintains verbal information, and the visuo-spatial sketchpad that maintains

transient visuo-spatial information [8]. Another possible role of the alpha co-

herence in the inhibitory mechanisms involves processing of spatially and tem-

porally extended visual objects [74, 76]. Both of these processes are involved

in the cross-modal perception and communication via alpha coherence may be

the most plausible neuromarker of inter-group variabilty at the network level.
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Recent study by Fernández and colleagues demonstrates an increase in the

power of theta oscillations in response to an incongruent McGurk stimulus,

thereby accentuating its role in the prediction of the conflict [95]. Noticeably,

we observed an enhanced global coherence in the theta band in frequent and

rare perceivers which indicates even if theta band communication is present

in both group of perceivers, it is a not necessarily a specific marker of inter-

individual differences or trial specific perception. In general it is quite possible

that different neuro-cognitive processes can be operating simultaneously in-

volving communication at various frequencies via coherence [118]. Hence, it is

important to identify which of these are meaningful to the ongoing task and the

subtle differences that vary with the context in which the task evolves.

Inter-trial variability at network level was explored in our previous study [78]

where we have shown global coherogram differences: desynchronization in the

alpha, beta bands and enhancement in gamma band. Here, we replicate those

results in time-averaged global coherence. However, in the current study our

global coherence results of the congruent AV stimuli (/pa/, /ta/ and /ka/),

wherein we see no significant differences (Figure 4.4B), highlight the robust-

ness of these oscillations as a reliable marker of AV integration. An obvious

question emerges, do cross-frequency couplings among theta, alpha, beta and

gamma band exist in a context specific way? Questions of such nature become

a prime candidate to answer for future studies. A detailed account of cross-

frequency coupling via coherence, phase-amplitude or phase-frequency cou-

pling is currently out of scope of the present study.

Our source analysis shows activations in posterior STS, fusiform gyrus, left in-

ferior frontal gyrus and bilateral superior frontal gyrus (Figure 4.5). Activations

in these areas corroborate with the earlier findings. Notably, the consistency

of the source activations during McGurk stimulus and congruent AV stimuli

further emphasize the relevance of understanding the underlying information

processing in terms of whole brain network rather than isolated brain modules.
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Overall, global coherence acts as a robust global functional connectivity marker

as it is affected to a lesser degree by volume conduction, simply because the

functional connections that can spuriously affect a distinct pattern of coherence

are unlikely to survive the normalized vector summation procedure that is un-

dertaken. However, the neural mechanisms that give rise to the network level

correlates require a combination of electro physiology and neurobiologically

inspired large-scale computational model.
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Chapter 5

Neurodynamic explanation of
perceptual variability in the
perception of cross modal speech

5.1 Introduction

Our understanding of the workings of the brain and cognition have primar-

ily come from modular paradigm. The modular paradigm postulates that our

cognitive abilities emerge as result of activations in brain areas working as in-

dependent processes [36]. However, converging evidences over the years elu-

cidate limitations of the approach [44]. Even the sensory cortices, considered

to be highly modular structures functionally has been shown to possess cross-

modal interactions [45]. A more emerging view posits that information pro-

cessing associated with the functioning of higher order brain functions (action,

perception, learning, language, and cognition) is carried out by large scale neu-

ral networks [19]. Although the structural architecture of the brain has been

extensively studied, the mechanisms of the complex dynamics elicited by the

neural networks as brain oscillations and synchronizations during any cogni-

tive task remains elusive.

In the context of multisensory speech perception, a recent study has indicated

that beyond a specific region of interest, a large-scale network of oscillatory
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brain networks are involved in effectuating cross-modal perception [78]. Fur-

thermore, our findings from the previous chapter indicate that synchroniza-

tion of the neural networks in specific oscillatory bands (e.g alpha and gamma

especially) are the most pertinent representation of inter-inter-trial and inter-

individual variability in cross-modal perception. However, a systems-level in-

sight on the workings of the neuronal assemblies requies a neuro-biologically

inspired computational model.

The existing models of multisensory integration are either motivated from the

context of response choices and probabilistic distribution of stimulus cues in the

environment [77] or explanation of behavior from a purely phenomenological

models [28, 129]. Typically these models attempt to explain the firing rate dy-

namics of single neurons or the local population using a combination of synap-

tic and stimuli inspired parameters. Thus, the neurodynamical explanation of

large-scale functional connectivity patterns observed during cross-modal per-

cept at the macroscopic scale of observation in EEG and MEG remains elusive

because of the dearth of a network model that captures the large-scale brain

network dynamics.

We employed a neural mass model approach to investigate the alpha and gamma

coherence dynamics associated with inter-individual and inter-trial variability

respectively. Since EEG data does not necessarily reflect the local synaptic ac-

tivity, neural mass model which operates to phenomenologically explain meso-

scopic and macroscopic features in EEG/MEG data offers an attractive tool to

understand the underlying neural mechanisms. A neural mass is essentially

an abstraction of summed synapto-dendritic activity of several thousand neu-

rons in an area which can be in a cooperative dynamical state such as syn-

chronous firing that gives rise to low-frequency oscillations. Such shared dy-

namical states allow us to reduce the population dynamics in terms of coupled

ordinary differential equations where explicit spatial effects can be ignored. We

considered broadly a network of three neural masses (each comprising a popu-
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lation of excitatory and inhibitory Hindmarsh-Rose(HR) neurons) as the under-

lying neuro-cognitive network comprising of auditory, visual and cross-modal

masses(nodes)(Figure 5.1). Subsequently, by varying the coupling between

these three nodes, we capture the neural mechanisms through which coherence

dynamics evolve in the brain. Overall, we present an attractive mechanistic

proposal that underlie the observed inter-individual and inter-trial variability

in multisensory speech perception.

5.2 Materials and Methods

5.2.1 Large-scale dynamical model of three neural masses

Our objective was to construct a large-scale dynamical model which is biologi-

cally realistic to explain the generative mechanisms underlying observed coher-

ence spectra and frequency specific functional connectivity (Chapter 4, Figure

4.3 and 4.5) emerging as a results of inter-trial and inter-individual variabil-

ity. Our proposed model is a network of three neural masses, each compris-

ing of excitatory and inhibitory neurons representing auditory (A), visual (V)

and higher order multisensory (M) cortical regions (Figure 5.1). We follow a

previously established practice and convention in computational modelling by

treating each cortical region as an individual node as suggested by Stefenascu

and Jirsa [123].

Furthermore, we incorporated the following biophysically realistic factors in

our model construction-

• Auditory node is assumed to be most sensitive to ambient temporal fluc-

tuations hence operating with a fast time-scale [112], visual node the slow-

est in terms of sensitivity [142] and somewhat intermediate time-scale for

multisensory node.

• Two of the ways visual inputs are directed to the auditory cortex are: 1)
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Excitatory neuron

Inhibitory neuron

Excitatory influence (EI)

Inhibitory influence

Source of EI

Sink of EI

Both source and sink of EI

Visual node with Slow time-constant

Auditory Node with Fast time-constant

Multisensory Node with Intermidiate time-constant

AF

MI

VS

VS

AF
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Figure 5.1: Large scale dynamical model consisting of a network three neural
masses with different time-constants: The model comprises three nodes rep-
resenting auditory(fast time-constant), visual(slow time-constant) and higher
order multisensory regions(intermediate time-constant). Each node consists of
network of 100 Hindmarsh-Rose excitatory and 50 inhibitory neurons. Each
neuron can exhibit isolated spiking, periodic spiking and bursting behavior.
Excitatory influences between the nodes are balanced by their inhibitory coun-
terpart. The source and sink represent the flow of excitatory influence.
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visual cortex could directly influence the auditory cortex in a feedforward

manner due to direct projections [41, 111, 138] and 2) feedback from the

higher multisensory association areas [15]. Hence, in our proposed model

visual node influences the auditory node in both manners: directly and

indirectly via multisensory node.

• As post-synaptic potentials of pyramidal cells, which are excitatory, are

shaped by their connections with other excitatory cells and inhibitory cells

[73]. We use a population of excitatory and inhibitory neurons in each

node where the number of excitatory neurons are considerably higher

[103]. Thus, 150 excitatory neurons and 50 inhibitory neurons are selected

to have a 3:1 ratio between them, an approach previously followed by

Stefanescu and Jirsa [123]. Inhibitory neurons in one neural area do not

directly influence inhibitory neurons within the same area since such con-

nections are sparse in nature [123, 143].

5.2.2 Dynamics of Hindmarsh-Rose neurons

The neurons in the human brain have different types of dynamics. A neuron

can fire regular spikes, fast spikes or it can fire in bursts. Hindmarsh-Rose

model is a three dimensional model (see (5.1)) that capture most of these dy-

namics as shown in Figure 5.2. Therefore, we used Hindmarsh Rose neurons

in our model. The different dynamics depend on the parameter I (external cur-

rent). The state variables x and y vary on a faster time scale while the state

variable z evolves on a slower time scale as per the following equations:

ẋ = y − ax3 + bx2 − z + I

ẏ = c − dx2 − y

ż = r(s(x − x0)− z)

(5.1)
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Figure 5.2: Dynamics of Hindmarsh Rose neurons: Depending on the param-
eter I, the system shows a wide range of behaviors, from regular spiking to
bursting to chaotic regimes and fixed point behavior

5.2.3 Dynamic Field Model

Incorporating the aforementioned biophysically realistic factors, we define a

dynamic mean field model that comprises of three equations for an excitatory

Hindmarsh Rose (HR) neuron (number of excitatory neurons are 150 within an

area, NE = 150) and three equations for an inhibitory HR neuron (number of

inhibitory neurons are 50 within an area, NI = 50). The three variables account

for the membrane dynamics and two kinds of gating currents, one fast and one

slow respectively. Thus, the entire network can be represented as a network of

coupled non-linear differential equations comprising of -
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τLżL
nI

=r[s(xL
nI
− x0)− zL

nI
] ; nI = 1, ..., NI ; L = 1(A), 2(M)&3(V)

(5.3)

where L: A, V and AV for auditory, visual and audio-visual areas that are

driven by a common noise distribution (ε). In our model auditory node has

the fastest time-constant (τA ∼ 0.05ms), visual node has the slowest time-

constant (τV ∼ 2.5ms) and the time constant value for the multisensory node

is chosen to be between the two nodes (τM ∼ 1ms) as it integrates informa-

tion from both the modalities. The mean activity of excitatory neurons in a

node (E(xnE = 1
NE

∑NE
nE=1xnE)) influences neuronal activities of other nodes that

is governed by coupling parameters: WAV (auditory-visual coupling), WAM

(auditory-multisensory coupling) and WVM (visual-multisensory coupling). Pos-

itive value of coupling parameters reflects excitatory influence and negative

value of coupling reflects inhibitory coupling. Inhibitory influennces are cho-

sen to maintain a balance with the excitation. For example, visual node’s ex-

citatory influence of +WAV on the auditory node is balanced with inhibitory

influence of of the same strength: −WAV from the auditory node.

In this configuration, visual node is referred as source node as it is the source of
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excitatory coupling whereas auditory node is referred to as sink node as all ex-

citatory couplings are directed towards auditory node and multisensory node

behaves as both source and sink. We place each individual neuron in a dynam-

ical regime where both spiking and bursting behavior is possible depending on

the external input current (I) that enters the neuron when other parameters are

held constant at the following values: a = 1; b = 3; c = 1; d = 5; s = 4; r =

0.006; x0 = 1.6, following the values according to Stefenascu and Jirsa [123].

The coupling between neurons within a node is linear and its strength is gov-

erned by the following parameters: KEE for excitatory coupling, KEI for excitatory-

inhibitory coupling and KIE for inhibitory-excitatory coupling. As excitatory

and inhibitory synapses are not independent processes, their relation is cap-

tured by the ratio n = KIE
KEE

. As alpha (8-12 Hz) and delta (1-4 Hz) rhythms

are observed during resting state [46], the inhibition to excitation ratio (n =

3.39) is chosen when the average activity of nodes in a disconnected network

has higher power at alpha and delta frequencies in the absence of stimulus

(µ(IA,V,M = 0.1); baseline). The external currents to both the excitatory and in-

hibitory subpopulations are drawn from a Gaussian distribution where µ and σ

are the mean and standard deviation. As the input stimulus relays to auditory,

visual and multisensory regions via thalamus, we interpret lateral geniculate

nucleus (LGN) and medial geniculate nucleus (MGN) to be the source of ex-

ternal current (IA, IV , IM). pulse of 450 ms in the nodes when the model was

simulated for 1 sec. In rhesus monkey, the projections of MGN to pSTS were

found to be sparse [144]. Therefore, we choose lower mean value of external

current to multisensory node (µ(IM = 0.85)) in comparison to the visual node

(µ(IV = 2.8)) and the auditory node (µ(IM = 2.8)) while keeping the standard

deviation of the external current at 0.4 for all nodes.
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Table 5.1: Description of model parameters and their corresponding values
used in the model

Parameter Value Description of parameters
a, b, c, d 1, 3, 1, 5 Constants for faster variables x and y
r 0.006 Lower value of r is responsible for

slower time-scale of z
s 4 Constant affecting slower variable z
x0 -1.6 (x0, y0, 0)is a stable equilibrium point

of Hindmarsh-Rose model
NE, NI 150, 50 Number of excitatory and inhibitory

neurons in each node
µ, σ 2.8, 0.4 Mean and dispersion of input current

in each node
InE,InI

Computed Input current for excitatory and
from µ, σ inhibitory neurons in each node

τA, τV , τM 0.05, 2.5, 1 Time-scales for auditory, visual and
multisensory nodes

ε 0.1 Constant affecting the dispersion
of noise

Within nodes
connectivity
KEE 0.5 Coupling between excitatory neurons
KEI 0.5 Excitatory to inhibitory coupling
η 3.39 Constant affecting slower variable z
KIE Computed Inhibitory to excitatory coupling

from η and KEE
Between nodes
connectivity
WAV , WAM, WVM Explored in the range 0 to 1 0r -1 to 0
State variables
xnE , xnI Membrane potentials for excitatory

and inhibitory subpopulation
ynE , ynI Spiking variables for excitatory and

inhibitory subpopulation
znE , znI Bursting variables for excitatory

and inhibitory subpopulation
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5.3 Results

5.3.1 Inter-individual variability

Empirical findings from Chapter 4 highlight a significant negative correlation

between each participant’s alpha coherence and McGurk susceptibility. We hy-

pothesized that mediation of interaction between auditory(A) and visual (V)

node via the multisensory node (M) (i.e. stronger A-M and V-M coupling than

A-V coupling ) to be associated with participants with higher susceptibity of

McGurk effect. To test this hypothesis, we started with a balanced network

coupling state, WAV = WAM = WVM = 0.35 where alpha and gamma band co-

herences co-exist (Figure 5.3A) and studied the change in the coherence peaks

with decreasing direct A-V coupling (WAV). In Figure 5.5B , we observe a sup-

pression of alpha coherence peak as A-V coupling decreases; however gamma

coherence peak remains more or less intact. Further, when A-V coupling be-

comes negligible (WAV < 0.05) we observe disappearance of alpha coherence

peak. This suggests that decrease in alpha coherence can stem from stronger

A-M and V-M coupling than direct A-V coupling in participants with higher

susceptibility of McGurk effect.

5.3.2 Inter-trial variability

McGurk percept (/ta/) was characterized by enhanced beta and gamma coher-

ence along with decreased alpha coherence. Here, by systematically varying the

coupling parameters between the three nodes, we try find the optimal model

configuration that could elicit the patterns observed empirically. Our results

from the previous section show that frequent perceivers are characterized by

decreased alpha band coherence elicited by negligible A-V coupling. Further-

more, a decreased A-V coupling cannot directly explain the illusory perception

frequent perceivers. However, the emergence of gamma band (observed empir-
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Figure 5.3: Prediction of alpha and gamma coherences from neural mass
model: A) Alpha and gamma band coherences co-exist in moderate coupling
range. B) Only direct A-V coupling generates alpha coherence independently.
C) Indirect A-V coupling via multisensory node generates gamma coherence at
the limit case scenario of weak direct coupling.

ically during /ta/ perception) coherence on incorporation of indirect A-V inter-

actions via multisensory node (Figure 5.3A, C) allow us to hypothesize that the

indirect communication via multisensory node is crucial for cross-modal per-
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Figure 5.4: Mechanistic understanding of Inter-individual and inter-trial
variability: A) Alpha de-synchronization characteristic of frequent perceivers
resulted due to negligible A-V coupling. B) C) Enhanced gamma coherence and
reduced alpha coherence observed in illusory perception are due to an increase
in indirect coupling involving multisensory node irrespective of the influence
of direct A-V coupling.

ception.

To test this hypothesis, for frequent perceivers we start with a network config-

uration that generates peak only around gamma band (WAV = 0.05, WAM =
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WVM = 0.35, Figure 5.4A, 5.3C). And, for rare perceivers we start with a bal-

anced network configuration that generates co-existing alpha band and gamma

band coherences (WAV = WAM = WVM = 0.35). Then, we track the change

in gamma coherence in the medium coupling (MC) range. In line with our

hypothesis, we observe an increase in gamma coherence in network configu-

rations for both frequent and rare perceivers. Interestingly, increasing indirect

A-V interactions not only increases gamma band coherence but also display a

decrease around alpha band coherence in network configurations of frequent as

well as rare perceivers even though frequent perceivers exhibit overall weaker

alpha band coherence (Figure 5.4B, C). Thus, our model highlights that an in-

crease in indirect A-V interaction via multisensory node leads to an increase in

gamma band coherence and decrease in alpha band coherence thereby facilitat-

ing illusory perception.

5.4 Discussion

Robust oscillations observed from macroscopic recordings such as EEG/ MEG

are an outcome of network interactions among local subpopulations of excita-

tory and inhibitory neurons. A neural mass model that operates to neurody-

namically explain mesoscopic and macroscopic features in EEG/ MEG data of-

fers an attractive tool to understand the underlying neural mechanisms [29, 59,

82]. Therefore, using a computational model of interacting large-scale brain net-

works, we tried to explain neural mechanisms that generate the coherence dy-

namics associated with inter-individual and inter-trial variability. The key find-

ings of the study are: 1) Inter-individual variability stems from the differences

in the coupling between auditory- and visual node 2) Cross-modal/illusory

perception is mediated by the stronger coupling between auditory-multisensory

and visual-multisensory than coupling between auditory-visual.

The time scale of processing in our computational model is most disparate for

86



Chapter 5. Neurodynamic explanation of perceptual variability in the perception of
cross modal speech

the auditory and visual system, with auditory the fastest and visual the slow-

est [112, 142]. Without the presence of an intermediate time-scale, one “mode

of communication" (alpha coherence) is sustained by the neural mass model

within biologically relevant parameter regimes. Once there is another neural

mass operating at intermediate time-scale participating in processing of infor-

mation, the higher dimensionality of the resultant dynamical system allows

creation of another mode of communication (gamma coherence). Hence, our

model suggests that gamma coherence could emerge due to the communica-

tion between primary auditory and visual areas but routed indirectly via areas

such as pSTS or inferior parietal or frontal areas. Our suggestion is in line with

earlier observations of visual stimuli modulating auditory perception either di-

rectly resulting in alpha coherence [67] or indirectly via higher order regions

(STS) resulting primarily in gamma coherence [68, 85].

Drawing from the model, inter-individual differences primarily emerge from

the differences in the A-V coupling. A stronger A-V coupling implies a lesser

mediation via the multisensory node (stronger A-M and V-M) leading to weaker

integration which is akin to rare perceivers. Conversely, lesser A-V coupling

implies a larger involvement of the multisensory node (stronger A-M and V-

M) in mediating the integration of the sensory inputs characteristic of frequent

perceivers. Our findings corroborates with the earlier findings suggesting the

activity in multisensory node - superior temporal sulcus (STS) as the neural

basis for inter-individual differences [99]. However, our findings unfolds the

underlying mechanism that places STS as the prime locus responsible for het-

erogeneity.

Phenomenological model of communication via coherence: A key principle of

multisensory integration

Alpha and/or gamma coherences have been observed in other audio-visual

perception studies involving speech phrases [34], natural scenes [67] and also

artificially generated A-V looming signals [85]. Strong A-V interactions that
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distinguish the two kinds of perceiver groups (Figure 5.5A) also explain the

increase in alpha phase consistency observed during natural A-V scenes in rhe-

sus monkeys [67]. Increase in gamma coherence and reduction in alpha and

beta coherences were observed during the perception of incongruent (lagged)

A-V speech phrases [34]. Similarly, in rhesus monkeys communication through

coherence between auditory cortex and STS was high in gamma band during

congruent A-V looming signals [85]. We have established that increase in the

interaction between fast and slow nodes via intermediate node increases the

gamma coherence and decreases coherences in alpha and beta bands (Figure

5.5B). Extending to studies beyond audio-visual perception, direct interactions

between fast and slow nodes can explain the observed high alpha coherence

during good performance while matching tactile Braille stimulus with its visual

counterpart [57] and the fast-slow indirect interactions via intermediate node

can explain high gamma band coherence during rubber-hand illusion when

visuo-tactile stimuli were congruent [66]. Therefore, our proposed model is ca-

pable of explaining wider range of observations which are similar in neuronal

network mechanisms.

Although our model of three interacting neural masses with different time-

constants that generate band specific coherences can come across as a canonical

model of neuronal network dynamics, certain limitations exist. Multi-parametric

and unbounded nature of the parameter space results in myriads of dynamics

including chaos which is non-biological [123]. Therefore, such models should

not be used to directly fit the data using optimization techniques. Nonetheless,

our model will be useful as a phenomenological or minimalistic model in pro-

viding mechanistic insights into many findings to the ones we have discussed

as well as several others [40, 43] including pathological.
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Conclusions

Speech is complex by nature because of its transient acoustic properties. Re-

trieval of as much information as possible from the visual cues becomes crucial

for efficient communication. Therefore, perception of speech, most of the time

is a multisensory phenomenon involving atleast two sensory modalities: vision

and audition. We discussed several examples in this thesis where incidence of

conforming information from different modalities leads to robust perception.

Nevertheless, the temporal alignment of the conforming modalities are more

effective in bringing reliable perception. The neural basis of this robust human

ability has been under intense investigation. However, extant data are far from

conclusion with regard to the pertinent representational space of multisensory

speech perception and its heterogeneity across individuals and contexts.

In the current thesis, we tried to address these issues by performing psychophys-

ical experiments employing the prototypical paradigm - McGurk effect in tan-

dem with EEG recordings. We specifically focused on identifying the dynamics

of large-scale oscillatory cortical network because the neural machinery that

effectuate multisensory perception would require dynamic interaction of dis-

tributed brain regions operating as large-scale network.

We initially sought on identifying the markers in the large-scale oscillatory net-

work underlying temporal integration of AV speech. The study was primar-
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ily motivated by the fact that binding of AV speech streams is less sensitive

to AV asynchrony during speech perception than perception of other stim-

uli [96,132,134,135]. While replicating our behavioral results using synchronous

and asynchronous McGurk stimuli, we demonstrated that cross-modal percept

during synchronous McGurk stimuli involves increase in gamma and decrease

in alpha band global coherence indicating the existence of the states of synchro-

nization and de-synchronization of large-scale network in the respective fre-

quency bands. Conversely, cross-modal percept during asynchronous McGurk

stimuli involves a broad-band increase in the global coherence indicating the

engagement of the cortical network in more frequency bands to achieve the

cross-modal percept [78].

We further investigated if the markers underlying the temporal integration of

AV speech span across various spatial scales of neuronal organization that can

be measured from EEG data. Specifically, we were interested to know how the

local information processing manifested in the individual sensors are orches-

trated into the global integrative network that facilitate AV speech perception.

To this end, employing the dataset from the previous study, we identified the

neural representation of subjective cross-modal perception at different organi-

zational levels - at specific locations in sensor space and at the level of the large-

scale brain network estimated from between-sensor interactions. We demon-

strated that an enhanced positivity in the event-related potential peak around

300 ms following stimulus onset associated with cross-modal perception. At

the spectral level, we show that cross-modal perception involved an overall

decrease in power at the frontal and temporal regions at multiple frequency

bands during synchronous and asynchronous AV stimuli, along with an in-

creased power at the occipital scalp region for synchronous AV stimuli. Finally,

at the level of large-scale neuronal networks, our analysis show that enhanced

functional connectivity at the gamma band involving frontal regions serves as

a marker of AV integration. Put together, we report that segregation of infor-
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mation processing at individual brain locations and integration of information

over candidate brain networks underlie multisensory speech perception [79].

The large-scale network properties elicited in the dynamics of global coherence

as shown in the aforementioned studies result from the interactions among sub-

populations of local excitatory and inhibitory neurons. Although, our investi-

gations did offer a global picture of the dynamics of cortical network, it does not

provide insights on the neuronal mechanisms in terms of specific interactions

between cortical areas that facilitate cross-modal speech perception. Moreover,

the neural basis of inter-individual and inter-trial heterogeneity from network

perspective remains unclear. Therefore, we performed a psychophysical exper-

iment involving incongruent McGurk stimulus and congruent AV stimuli while

recording EEG from participants. We show that subjective differences observed

in the susceptibility of McGurk effect was negatively correlated with their al-

pha band global coherence. Notably, we observed this effect to be consistent

even during congruent stimuli indicating subjective differences in the inher-

ent processing of AV stimuli. Also, we demonstrate that inter-trial variability is

characterized by decreased alpha and increased gamma band global coherence.

These findings in addition to validating the employment of McGurk effect as a

proxy for AV speech perception, also strongly indicate large-scale functional

connectivity as the most pertinent representational space of information pro-

cessing.

Finally, to gain insights on the mechanism underlying cross-modal perception,

we employed a biophysically realistic neural mass model. Since EEG data does

not necessarily reflect the local synaptic activity, neural mass model which is es-

sentially an abstraction of summed synapto-dendritic activity of several thou-

sand neuron in an area, would phenomenologically explain the macroscopic

features of EEG data. Our parsimonious model of three nodes (auditory, visual

and multisensory) each comprising a population of excitatory and inhibitory

Hindmarsh-Rose neurons revealed that a stronger coupling of the auditory
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and the visual node to the multisensory node than the direct coupling between

auditory and visual node facilitate cross-modal perception effectuating inter-

individual heterogeneity.

Overall, we present comprehensive analyses and insights on cross-modal speech

perception from the perspective of large-scale functional connectivity. In addi-

tion to that, our findings primarily indicate towards a shift from the modular

paradigm (looking at brain as isolated component processes)to understanding

brain as a functional network dynamics of which are amenable to various cog-

nitive processes.

Future Directions

As in any other examples of biological information processing, understand-

ing structure-function relationships is crucial to develop mechanistic insights.

Hence, an immediate extension of this work in the future can be to explore the

effect of underlying anatomical network to the large-scale functional connectiv-

ity patterns observed.

Elicitation of enhancement in global coherence in multiple frequency bands as

observed in our results raises an obvious question - do cross-frequency cou-

plings between theta, alpha, beta and gamma bands exist in a context specific

way ? Future analyses can explore phase-amplitude, phase-frequency coupling

that may underlie these processes.

Finally, a concurrent fMRI-EEG employing similar psychophysical experiments

can delimit the spatio-temporal boundaries over which the cross-modal speech

perception related dynamics unfold .
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