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ABSTRACT 
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 Brain oscillations are fluctuations in the potential difference if measured by 

EEG or fluctuations in the magnetic field if measured by MEG. Resting state in the absence of 

external stimulus leads to self-evolving oscillations in the brain. Brain is never at rest. In the 

absence of external stimuli, brain is functioning by planning future events and tasks, recalling 

past experiences hence consolidating memory and is ready to receive a unique stimulus which 

can draw our attention towards it. Alpha oscillation is known to play a role in drawing attention 

towards a salient stimulus. Neuroimaging studies and autopsy studies have shown that even 

healthy aging leads to atrophy of the nervous tissue. One can speculate that this will certainly 

have an impact on the brain oscillations. Alpha oscillation is most prominent during resting 

state and is known to change many of its properties with increasing age. Hence the dynamics 

of oscillations at rest does have a lot of clinical applications. We look for such dynamics of the 

alpha waves over various regions of the brain and analyse changes in it with age. The subjects 

are healthy individuals with age from 18 years to 88 years. For our alpha oscillation dynamics, 

we defined alpha burst. It is a spectral event which crosses a statistical z score threshold for the 
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alpha power at 10 Hz and is sustained for 1 second or more. We then looked on the number of 

these spectral events and then compared it between three age groups i.e. young, middle aged 

and old. We did find some differences between the age groups mainly in the occipital sensors, 

prefrontal sensors and global i.e. all sensors. A general trend observed across all the sensors is 

that the total duration and number of such spectral events increases with age i.e. from young to 

middle-age and then decreases again for the old age across most of the sensors. This is just one 

way of defining a spectral event. By collecting empirical data from a huge population of healthy 

and population suffering from neurodegenerative diseases, we can compare the oscillations in 

healthy aging with that of neurodegeneration.  Healthy aging brain shows some atrophy and 

perturbations of the resting state dynamics, we can draw a model of healthy aging which can 

be used for diagnostic purposes like early prediction of diseases. In case of disorders we can 

predict the extent of progression by non-invasive techniques like MEG and EEG.      
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1 Introduction 

1.1 Brain Oscillations 

In humans, brain waves were first discovered in 1932 by Hans Berger. In his publication 

in 1 ram represents a continuous curve with continuous 

oscillations in which one can distinguish larger first order waves with an average duration of 

90 milliseconds and smaller second order waves of an average duration of 35 milliseconds. The 

larger deflection (Buzsáki, 2009). Berger named the 

know anything thing about technical and physical basis of the waves and the mechanics to 

extract further information from the waves (MCCRUM, 1964). Since then we have come a 

long way. The analysis of brain waves has found its way in diagnosis of epilepsy (Uhlhaas & 

Singer, 2006) and research is going on to further elucidate its implication in other psychiatric 

disorders like schizophrenia (Uhlhaas, Hae . The right tools are 

required to accomplish a task, similarly to record the brain waves one needs some sophisticated 

equipment that serve as a window for us to have a peek into the brain. EEG 

(electroencephalogram), MEG (magnetoencephalogram), ECog (electro cortigogram), and 

LFP recordings with microelectrodes are the methods widely used to record brain oscillations. 

The former two are non-invasive while the latter two are invasive techniques requiring surgical 

implantation of electrodes into the brain. EEG records fluctuations in the potential difference, 

while MEG records the fluctuations in the magnetic field as brain waves.  

 

1.2 Origin of Brain oscillations 

Any excitable membrane whether it is a spine, dendrite, soma, axon or axon terminal 

and any type of transmembrane current contributes to the extracellular field (Buzsáki, 

Anastassiou, & Koch, 2012). Neurons transmit information through action potentials. This 

action potential is a result of change in voltage across the membrane. This leads to the release 

of neurotransmitter which again causes change in membrane potential at the dendritic spines. 

Only if thousands of cells contribute their small voltage, the signal becomes large enough at 

the scalp to be measure by the EEG electrode at the scalp. This process occurs across the brain 

and leads to fluctuation in the potential measured at the scalp. The EEG recorded from the scalp 
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samples mostly the synaptic activity that occurs in the superficial layers of the cortex. The 

contribution of deeper layers is scaled down substantially, whereas the contribution of neuronal 

activity from below the cortex is, in most cases, virtually negligible (Buzsáki, 2009). 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 1- Brain oscillations at varying depths in brain tissue  

The diminishing magnitude of the wave shows the dampening of signal away from the 

source due to resistance from the tissue (Buzsáki et al., 2012). This dampening is not observed 

in case of MEG, but if far from the source the magnitude of field does decrease as shown in 

figure below.  

 

 

 

 

 

 

Figure 1. 2- Magnetic field around a moving positively charged particle.  
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The blue arrow shows the direction of movement. The direction of magnetic field can 

be determined by the right-hand rule. The thinning of magnetic field lines shows diminishing 

magnitude of magnetic field with distance.   

  

Figure 1. 3- dipoles contributing to EEG and MEG signals (M. X. Cohen, 2014) 

a) dipole is a radial dipole and contributes the most to the potential difference recorded 

in EEG. The b) dipole is a tangential dipole and it generates magnetic field perpendicular to it. 

This magnetic field is recorded by the magnetometers in the MEG sensors. The tangential 

dipoles can

at d contributes to EEG signal but its magnitude is very less as it is located away from the scalp.  
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1.3 Measuring the magnetic field of the brain

The magnetic field generated by the neurons is extremely minute. It is in the units below 

10-12 c field (0.5x10-4 T) and urban magnetic 

noise (10-7 T) (D. Cohen & Halgren, 2003). A comparison with EEG shows  is shown below.  

Figure 1. 4- schematic comparision of MEG and EEG signal. 

  

On the left the units are in femto tesla( 10-15 ) while on the right the units are in 

microvolts(10-6). To measure such a minute magnitude of magnetic field, there are 

sophisticated magnetometers called SQUID (superconducting quantum interference device). 

MEG setup contains these SQUID arranged in the shape of a helmet to fit the human headshape 

(Figure 1. 4). The room is magnetically shielded to minimise external magnetic interference. 

Each SQUID measures the magnetic field with a temporal resolution of 1 ms, which varies 

with the manufacturer and settings of equipment. When plotted against time, it gives us the raw 

MEG signal.     
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Figure 1. 5- Magnetoencephalogram recording machine. An array SQUID is located in the 
helmet like structure supercooled with liquid helium.  In front of the participant is the screen 
for stimulus display 

 

1.4 Oscillations and spectral analysis 

The raw signal recorded by EEG and MEG is a mixture of frequencies up to the Nyquist 

(Sampling rate/2). The frequencies of interest in the brain oscillations are Delta waves (0.1  to 

4Hz), Theta(4-7Hz), Alpha(8-12Hz), Beta(13-30Hz) and Gamma(30-90Hz). The raw signal is 

a mixture of all these frequencies. To delineate these individual frequencies from the raw signal 

one needs to perform the transformation of the signal. Here the key of extracting the 

information is to transform the data from time domain to frequency domain. Most widely used 

transformation is the Fourier transform. It provides amplitude of sine functions of various 

frequencies up to the nyquist that exist throughout the entire duration of the signal (Le Van 

Quyen & Bragin, 2007).  
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Figure 1. 6- sine wave with frequency 5 Hz and its Fourier transform showing amplitude 1 at 
5Hz 

 

Figure 1. 7- mixed sine waves with frequency 5, 7, 14 Hz and its Fourier transform showing 
amplitude 10, 6 and 7 at their respective frequency. 
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2 Methods 

2.1 Participants 

The data was collected by Cambridge Centre for Ageing and Neuroscience. Cam-CAN 

is a multi-modal, cross-sectional adult life-span population-based study. There were 650 

participants ranging from age 18 to 88. These participants were tested for cognitive measures 

and neuropsychological test like vision, hearing, verbal intelligence etc. For our study I have 

selected 240 participants from three age groups.  The participants were divided into three 

groups young, middle-aged and old by us. Each group consisted of 80 participants with young 

group from age 18 to 32, middle-aged 49 to 57 years and old aged group from 79 to 88. 

2.2 Stimulus and Trials 

During the whole recording the participant was at rest with eyes closed. No stimulus 

was presented hence it is termed resting state recording. The recording was a single length for 

each participant with an average duration of 550 seconds.     

2.3 Neuroimaging Technique 

The neuroimaging technique used in the study was MEG. The data was acquired using 

Elekta Neuromag with 306-channel system consisting of 102 magnetometers and 204 

gradiometers with a sampling frequency of 1000 Hz or 1 ms. The data from the magnetometers 

was used for spectral analysis.  

2.4 The question 

With researchers reporting the slowing of alpha power with age in power spectrum, 

changes in network oscillations (Sahoo, Pathak, Deco, Banerjee, & Roy, 2020) and bistability 

in the alpha power distribution (Freyer, Aquino, Robinson, Ritter, & Breakspear, 2009), we 

decided to look into the dynamics of alpha burst with increasing age. I was given raw MEG 

data which was acquired from Cam-CAN and I began my preliminary analysis. I performed 

spectral density estimation of a single participant and the plotted a spectrogram of a single 

channel.  
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Figure 2. 1- Spectrogram of a single magnetometer channel        

We noticed a repeating alpha activity, the yellow and red patches between 8 to 12 on the 

Y axis. Hence, we decided to look into the dynamics of alpha oscillations. We asked questions 

like whether the duration of these high-power alpha activity change with age? Whether the 

number of such high-power alpha activity change with age? We called this high-power alpha 

activity as alpha burst.     

2.5 Data Analysis 

The raw data was already ICA corrected for head movements. Field trip toolbox for 

MATLAB was used to read the raw files and chronux toolbox was used for Spectral density 

estimation.  

Spectral density estimation has some advantages over the Fourier transform for analysis 

of neural time series data. Practically neural oscillations are dynamic. Fourier transform 

provides the spectral content of the signal but it does not provide the information about the 

time at which the dynamics take place (Le Van Quyen & Bragin, 2007). Hence, time-frequency 

analysis helps us delineate each spectral component with a specific time and frequency. The 

method used for spectral density estimation is multitaper method. The tapers in multitaper 

analysis was set to [3 5] and the moving window set to [1.2 0.01]. This operation was performed 

for 102 magnetometers channels for each subject. 
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Division of the sensors  

Figure 2. 2- Layout of the MEG sensors, Elekta Neuromag MEG channel positions (Abadi et 
al., 2015) 

The sensors were classified according to their location. Global sensors  included all 

the 102 sensors, occipital sensors included sensors from the occipital cortex, prefrontal sensors 

included sensors from the prefrontal cortex, motor cortex, occipital cortex and sensory cortex. 

Once the sensors were divided the power was averaged across the extracted sensors  

For e.g. for global alpha power grand average was performed across 102 sensors, for 

occipital sensors the average was performed across 22 sensors and so on.    
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Figure 2. 3- Representation of a 3D spectrogram matrix. The third dimension contains 
individual sensors 

Each 2D matrix represents spectrogram matrix of one sensor. The row is represented 

by the frequency while the columns by time points. The value in the corresponding cell, 

indicates the power at that frequency and time. The sensors were indexed out according to their 

location above the head and then the power was averaged across the sensors. The power at 

frequency 10 Hz was extracted based on the frequency indices.  
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2.5.1 Defining Alpha burst 

Figure 2. 4- Power at 10 Hz for a typical subject It has some periods of high amplitude phases 

followed by low amplitude phases.   

On performing spectral analysis and plotting a scatter plot for maximum and minimum 

alpha power across age we found the maximum and minimum alpha to be highly variable 

among the same age group. Hence, we decided to define an alpha burst by the z score threshold 

method to normalise the alpha burst threshold among subjects. For e.g. if the alpha power at a 

particular time point crosses a z-score of 2.5 and is sustained for more than 1 second is termed 

an alpha burst. The number and time of each of those bursts is recorded and then compared 

across ages. 
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Figure 2. 5- Schematic representation of the alpha burst, defined as the alpha power which 
crosses a defined z-score(threshold) and is sustained for a set period of time. 

 

 

2.5.2 Dynamics of the Alpha Burst 

Three parameters of the alpha burst were analysed in this study, then statistically tested to 

check for the difference in the data.  

1. Mean Power of each burst  A burst consists of a vector in which the dimension is time 
points and the values in the cells is the corresponding power. Mean of all the cells in 
that vector gives mean alpha power of that burst. This value is concatenated with other 
bursts to form a vector for each group. The length of the vector is the total number of 
bursts for that group 

2. Length of Burst  The total time points in one burst is the length of each burst. From 
the parameters set for multitaper analysis, the time resolution is 10 milli second, hence 
the time between two adjacent time points is 10 milli sec.  

3. Number of Bursts - Bursts classified based on the above criteria are counted for each 
subject. 
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3 Results 

The number of bursts increases for the middle-aged population and then decreases for 

the old aged, so does the total length of the burst. This observation is consistent across all the 

sensors. The trend followed by the average alpha power across subject groups, is not in 

consensus with the length and number of bursts. (table 3. 1)   

ANOVA  One-way ANOVA with a significance level of 0.05 was performed to check 

for the difference in the distribution of data between the age groups. Only the sensor groups 

which showed a significant difference in distribution in any one of the dynamics mentioned 

above are displayed as figures and ANOVA table. 
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Groups
Number 
of 
Subjects  

Burst 
Count 

Average 
Length 
x10-2  sec  

Average Alpha 
Power(averaged 
over burst 
count)  

Standard 
Deviation  

Global Y  80 251 414.9875 6.60695E-27 5.11693E-27 

Global M  80 281 491.4 5.54819E-27 5.08391E-27 

Global O  80 262 428.125 6.31342E-27 5.12137E-27 

Occipital 
Y 

80 253 
426.275 

9.84668E-27 8.02759E-27 

Occipital 
M  

80 298 
521.4125 

8.23376E-27 8.15389E-27 

Occipital 
O  

80 300 
488.225 

7.83395E-27 6.91987E-27 

Motor Y  80 290 447.55 2.84721E-27 2.61179E-27 

Motor M  80 342 541.85 3.37086E-27 3.36284E-27 

Motor O  80 301 481.575 3.18198E-27 2.2729E-27 

Frontal Y  80 240 366.025 1.76987E-27 1.38777E-27 

Frontal 
M  

80 298 
460.3375 

1.91773E-27 1.82598E-27 

Frontal O 80 264 414.125 1.94802E-27 1.26353E-27 

Sensory Y  80 300 464.4 5.49616E-27 5.25658E-27 

Sensory 
M  

80 346 
562.225 

5.73602E-27 5.69349E-27 

Sensory 
O 

80 321 
521.0625 

5.42215E-27 4.7362E-27 

table 3. 1- Summary of results  alpha burst Dynamics  

ref Y  Young, M  middle-age , O - Old  
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Observation  The mean total time is lowest for the young population. As the age 

increases, we observe an increase in the mean total time of the alpha burst and it decreases for 

the old population. On performing one factor ANOVA with a significance level of 0.05, we get 

a p value of 0.03758. The data in the groups is non-normal, hence on performing a Wilcoxon 

rank sum test we find that the young population is significantly different from middle-aged 

group. There is no significant difference between the middle-aged and the old and between 

young and old (figure 3. 1 table 3. 2).  

A similar trend is observed in the number of alpha bursts in the prefrontal sensors. The 

mean number of bursts increases for the middle-aged group and it decreases for the old group. 

On performing one factor ANOVA with a significance level of 0.05, we get a p value of 0.0379. 

In the post hoc analysis by Wilcoxon rank sum test we find that the young group is significantly 

different from the middle-aged group while the there is no significant difference between the 

middle-aged and old and also between young and old (figure 3. 2 table 3. 3).  While there is an 

increase in the mean alpha power with age, the ANOVA results show no significant difference 

in distribution (figure 3. 3 table 3. 4).    

The trend shown for the total time points of global sensors is similar to that of frontal 

sensors. The ANOVA does not result in a significant difference in the distribution (figure 3. 4 

table 3. 5).  The trend shown for the total number of bursts of Global sensors is similar to that 

of frontal sensors. The ANOVA does not result in a significant difference in the distribution 

(figure 3. 5 table 3. 6).    

The mean power (global sensors) for each burst shows a decrease in the mean power for the 

middle-aged group and then an increase for the old aged group. One-way ANOVA results in a 

significant difference in distribution between the groups. Post hoc analysis by Wilcoxon rank 

sum test reveals that young age group is significantly different from the middle-aged, but not 

from the old aged group. The middle aged and the old aged groups show significant difference 

(figure 3. 6 table 3. 7).   

The trend shown for the total time points of occipital sensors is similar to that of frontal 

sensors and global sensors. The ANOVA does not result in a significant difference in the 

distribution (figure 3. 7 table 3. 8).    
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The trend shown for the total number of bursts of occipital sensors is little different of 

frontal sensors and global sensors. The mean number of bursts does not decrease for the 

occipital sensors. The ANOVA does not result in a significant difference in the distribution 

(figure 3. 8 table 3. 9).    

The Occipital sensors show a decrease in the mean power with age. One-way ANOVA results 

in a significant difference for the distribution between the groups. Post hoc analysis reveals 

that the young group is significantly different from the other two. Hence, we can say that the 

mean power of each alpha burst decreases with age but there is an uncertainty for the transition 

from middle aged to old aged group (figure 3. 9 table 3. 10).    
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3.1 Prefrontal cortex sensors

     
       

     

 

 

 

 
       

       

     

  

       

table 3. 2- Anova table Prefrontal sensors alpha burst total time points  

  

figure 3. 1- prefrontal cortex alpha burst total time points  
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table 3. 3- ANOVA prefrontal cortex number of alpha bursts 

figure 3. 2- prefrontal cortex number of alpha bursts  
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table 3. 4- ANOVA Prefrontal sensors mean power of bursts 

 

 

figure 3. 3- Prefrontal sensors mean power of bursts.   
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3.2 Global sensors

     

 

 

 

 

       

       

     

  

       

table 3. 5- ANOVA Global sensors total burst time points 

 

 

figure 3. 4- Global sensors total burst time points 
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table 3. 6- ANOVA Global sensors total number of bursts  

 

 

figure 3. 5- Global sensors total number of bursts 
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table 3. 7- ANOVA Global sensors mean power of bursts  

 

figure 3. 6- Global sensors mean power of bursts 
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3.3 Occipital sensors

 

     

 

 

 

 

       

       

     

  

       

table 3. 8- ANOVA Occipital sensors total burst time points  

 

figure 3. 7-  Occipital sensors total burst time points   
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table 3. 9- ANOVA Occipital sensors total number of bursts  

 

 

figure 3. 8- Occipital sensos total number of bursts  
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table 3. 10- ANOVA Occipital sensors mean power of burst   

figure 3. 9- Occipital sensors mean power of burst   
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4 Conclusion and Summary 

Important Observations  

1. There is decrease in mean alpha power of the bursts in the Occipital regions. For the 

global sensors the trend differs from the occipital i.e. the mean power decreases for 

the middle-aged group and then again increases for the old aged, whereas there is an 

increase in the mean alpha power with age in the prefrontal sensors but with no 

statistical significance is seen in the prefrontal sensors.  

2. The trend observed in the total length of bursts and the total number of bursts is similar 

for all the sensors except for number of bursts in occipital sensors. Mean length and 

number of bursts increases for the middle-aged group and then decreases for the old 

group, with significant difference observed only in the prefrontal sensors.  

3. When the mean burst power from the global sensors is compared with its number of 

bursts and total alpha time data, we observed a reverse trend. For the middle-aged 

group the mean length of bursts and number of bursts is more.    

4. Here from the trends, we can conclude that globally the middle-aged population has 

more frequent alpha burst with lower amplitude. We have to take this with a pinch of 

salt as the ANOVA of number of bursts and total length of bursts for the global sensors 

has shown an insignificance between the groups.  

4.1 Prefrontal sensors 

Coming to the prefrontal cortex sensors there is an increase in the mean power of alpha 

bursts with age. Though it fails a statistical significance test the trend is different from other 

sensors.  Prefrontal cortex is involved in planning, thinking, creativity, logical reasoning etc. 

Increase in mean power of alpha burst indicates robust neural oscillations of the network in 

alpha frequency. More alpha power at rest can imply a focused, calm and composed brain. In 

the middle-aged population due to maturity, experience and more knowledge and a 

physiologically healthy prefrontal cortex this effect can be seen in the number of alpha bursts 

in the prefrontal cortex. This effect should be checked for replicability in some task positive 

nnate functions like working memory, 
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attention or simple arithmetic tasks. If a similar result is found in the task positive studies, the 

above statement made can be said with conviction.   

Now coming to number of alpha bursts and total length of the bursts, we find that for 

the prefrontal sensors their mean increases for middle aged population. Post hoc analysis for 

both dynamics suggests the young group to be significantly different from the middle-aged 

population. There is no significant difference between the middle-aged and the old groups and 

also between young and the old groups. But looking at the distribution in the figure we see that 

the old aged group lies in between the young and middle aged, with some proximity to the 

istribution. We can infer that in spite of a reduction in the number and length 

of alpha bursts, the old group has sustained a high mean power of alpha burst. We can think of 

this as a compensatory mechanism of decreased alpha power in other regions of the brain due 

to age related atrophy. The brain is trying to compensate the lost alpha with high power alpha 

burst. Age related atroph es the temporo-parietal 

cortex, and the prefrontal cortex does not undergo the same degree of degeneration (Montez et 

al., 2009).    

 

4.2 Occipital sensors 

There is a decrease in the mean power of alpha bursts in these sensors. This observation 

at least in the occipital sensors is in consensus with the previous findings of slowing of alpha 

waves age (Sahoo et al., 2020). There researchers have reported shifting of alpha peak to the 

lower frequencies with age. Here we performed the spectral analysis at 10Hz, hence we can 

see a significant reduction in alpha power with age due to the underlying shift of peak at lower 

frequencies with age.  Previously some studies have noted alpha oscillations in corticothalamic 

networks (Bollimunta, Mo, Schroeder, & Ding, 2011) . The mean power of burst reduction in 

the occipital sensors can infer to demyelination of posterior thalamocortical connections and 

also of the pyramidal cells in the primary visual cortex, or it could be just a collateral of 

desynchronization in the network. This needs to be verified with other approaches to determine 

peak alpha like Hidden Markov model (HMM) (Seedat et al., 2020) or an automated multi-site 

algorithm (Chiang, Rennie, Robinson, van Albada, & Kerr, 2011). Neurodegenerative diseases 

the brain. The current burst detection approach used here and other methods like HMM can be 



28 
 

applied to subjects with neurodegeneration and on comparing the results one can paint a larger 

picture. 

4.3 Global sensors 

The mean alpha power of the bursts shows an unusual trend from what one would 

expect. Generally, it has been observed slowing of alpha with age in the power spectrum but 

here at 10Hz we see an increase in the mean power of alpha burst. This observation needs to 

be checked for replicability in data sets and even the data recorded with EEG. Looking at the 

length the trend is similar to other sensors, but average number of bursts are similar for the 

middle-aged and the old-age population.   

4.4 Clinical perspective 

se 

(Nimmrich, Draguhn, & Axmacher, 2015). By assessing the dynamics of alpha oscillations 

from the empirical data of healthy individuals we can draw a model of healthy aging. To make 

the model more robust, empirical data from a large population can be drawn and methods 

involving HMM and other algorithms to delineate the spectral dynamics can be looked upon. 

This model can be used to look for any perturbations in the alpha dynamics hence can be used 

for early prediction of neurodegeneration.   
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