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Chapter 1

Introduction

Hearing, the remarkable ability to perceive sound, stands as one of the fundamental

senses that enrich our human experience. From the soft whispers of a loved one

to the grandeur of a symphony orchestra, the auditory world surrounds us with a

symphony of sound. Our auditory system, an engineering marvel, plays a central role

in translating these vibrations into meaningful sensations, allowing us to connect with

the world and each other in profound ways. Its core comprises a cluster of miniature

acoustical sensors, densely packed into a space barely larger than a pea. These

sensors possess the ability to detect vibrations at the atomic level, responding with a

speed that far surpasses even our visual photoreceptors. This remarkable sensitivity

to auditory cues enables rapid orientation of the head and body to unfamiliar stimuli,

particularly those outside our immediate field of vision. Despite our strong visual

tendencies, human communication heavily relies on the auditory system; in fact, the

loss of hearing can have more profound social consequences than vision loss. Beyond

speech, the auditory system plays a fundamental role in appreciating the aesthetics of

music, representing one of the most sophisticated forms of human expression. Given

its crucial importance and intricate workings, audition remains a captivating and

vital mode of sensation.
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1.1 The structure of the auditory system

The auditory system‘s functional range extends from the ears to the frontal lobes,

with increasing complexity observed as we move up the nervous system’s hierarchy. It

begins with the transmission of sound waves through the peripheral auditory system,

where the external ear funnels sound vibrations to the middle ear and then to the in-

ner ear. In the inner ear, the cochlea converts sound vibrations into electrical signals

that travel along the auditory nerve to the brainstem. At the brainstem, the auditory

nerve fibers synapse with neurons in the cochlear nucleus [Yu and Young, 2000], the

first station of auditory processing (see Fig. 1.1). From here, information is relayed

to the superior olivary complex, which helps in sound localization, and the inferior

colliculus, which integrates auditory signals from both ears. The auditory pathway

then ascends to the thalamus, specifically the medial geniculate body (MGB), which

serves as a major mediating station for auditory information [Aitkin et al., 1981].

From the MGB, the auditory signals are projected to the auditory cortex in the tem-

poral lobe [Kandel and Schwartz, 2014]. The primary auditory cortex, located in

the superior temporal gyrus, is responsible for basic auditory processing, such as fre-

quency and intensity discrimination [Kaas and Hackett, 2000b]. Beyond the primary

auditory cortex, the auditory pathway branches into multiple auditory association

areas [Kaas et al., 1999]. These higher-order areas process more complex aspects of

sound, including speech comprehension, sound recognition, and musical perception

[Zatorre and Belin, 2001]. The auditory association areas also interact with other

sensory and cognitive areas of the brain, contributing to multisensory integration

and higher-level cognitive processes related to sound [Hackett, 2011]. In the current

thesis, my work is centred around the cortical auditory processing.
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Figure 1.1: Schematic representation of central auditory pathway and main nuclei
of brain stem. The shown ascending strucutral pathway extend from the cochlear
nucleus to the primary auditory cortex. The pathway includes crossing at the lower
brain stem level and thereby contralaterally dominant in subsequent representation.
Adapted from [Jayakody et al., 2018].

1.1.1 Primary Auditory Cortex

Located in the superior temporal gyrus of the temporal lobe, the primary auditory

cortex is the first stage of cortical auditory processing [Kaas et al., 1999]. Here, the

ascending auditory signals received from the thalamus undergo initial processing,

laying the foundation for cortical processing. The primary auditory cortex exhibits

tonotopic organization, where neurons are arranged according to their preferred

frequency response [Rauschecker et al., 1995, Pantev et al., 1989]. This spatial ar-

rangement allows for efficient frequency discrimination, enabling us to distinguish

between various pitches and tones. Within the primary auditory cortex, neurons

respond selectively to specific acoustic features, such as the duration and intensity

of sounds [Rauschecker et al., 1995]. Additionally, PAC is involved in encoding of

pitch, temporal envelope, and spectral content, transformation into percepts and

3



Chapter 1. Introduction

subsequent communication within the auditory system. This selectivity helps in

perceiving temporal patterns, essential for speech recognition and rhythm appreci-

ation in music [Luo et al., 2006, Zeng et al., 2005]. Additionally, the primary au-

ditory cortex is involved in binaural processing, integrating auditory inputs from

both ears to facilitate sound localization, a crucial aspect of spatial hearing. As

information progresses through the primary auditory cortex, it interacts with neigh-

bouring auditory association areas, marking the transition from basic sound anal-

ysis to more intricate auditory processing [Hackett, 2015]. These higher-order re-

gions play a pivotal role in extracting meaning from auditory stimuli, recognizing

familiar sounds, and engaging in complex auditory tasks like language comprehen-

sion and music perception. Moreover, the primary auditory cortex is not solely

limited to auditory processing. It interacts with other cortical regions, including

those responsible for selective attention, working memory, and emotional process-

ing [Plakke and Romanski, 2014, Kaas and Hackett, 2000a]. Such cross-modal in-

teractions underscore the integrative nature of auditory perception, enriching our

understanding of the broader cognitive implications of sound processing.

At the initial stage of cortical processing of auditory information, a hier-

archical organization unfolds, encompassing several functionally distinct fields

[Pandya and Sanides, 1973, Pöppel, 1997]. The first level comprises core primary

areas, composed of potentially two areas, AI and R, each exhibiting a specific pat-

tern of tonotopic organization and koniocortical histological features (See Fig. 1.2).

Functionally, these primary-like areas play a crucial role in basic auditory analy-

sis, such as frequency discrimination and intensity coding [Rauschecker et al., 1995].

The primary auditory cortex is densely interconnected and surrounded by the lat-

eral belt cortex, comprising the antero-lateral belt (AL), middle-lateral belt (ML),

and caudal-lateral (CL) belt [Kaas and Hackett, 2000b]. These lateral belt regions

host three separate tonotopic regions with frequency reversals that separate them.
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Compared to primary auditory cortical neurons, which primarily respond to rela-

tively simple acoustic elements like pure tones, neurons in the lateral belt associ-

ation cortex prefer more complex stimuli, such as band-passed noise and vocaliza-

tions. These lateral belt areas are part of the secondary auditory association cortex.

The secondary cortex regions exhibit a lower density of staining for the calcium-

binding protein parvalbumin [Hackett, 2011]. Neurophysiological studies have delved

into the complex auditory and multisensory responses of the belt regions, shed-

ding light on their role in higher-order auditory processing, sound recognition, and

the integration of auditory information with inputs from other sensory modalities

[Aitkin et al., 1981, Rauschecker et al., 1995]. These interconnected belt areas then

project to a lateral parabelt region, consisting of two or more fields, which have

limited direct connections with the core (Fig. 1.2). The pattern of connections

clearly distinguishes between rostral and caudal regions. Caudal core field A1 ex-

hibits moderate connections with the caudal belt and parabelt fields while being

mainly associated with the surrounding belt fields and the rostral auditory core field

(R). The rostral auditory core field (R) displays weak connections to both the rostral

and caudal belt and parabelt fields, as well as to RTp, but has moderate connections

with A1 and the RT. RT (region T) shows connections with the rostral belt fields

and the adjacent field RTp. RTp demonstrates a unique connectivity pattern in-

volving lateral and ambiguous connections with the temporal pole, rostral belt, and

parabelt fields. The resulting connectivity pattern forms a recurrent and interac-

tive network with numerous parallel paths and both direct and indirect connections.

Notably, the suprathreshold activation of the parabelt neurons are mostly carried

by the belt inputs rather than thalamic inputs. These intricate connections and

functional differentiations between the primary auditory cortex, lateral belt cortex,

and parabelt auditory cortex contribute to the complex auditory processing network

[Rauschecker et al., 1995].
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Figure 1.2: Auditory cortex and its intrinsic connections: (A) Lateral view of the
macaque cerebral cortex Dorsolateral view of the brain after removing the overly-
ing parietal cortex, exposing the ventral bank of the lateral sulcus and insula. The
approximate locations of the core region (solid red line), caudal and lateral por-
tions of the belt region (dashed yellow line), and the parabelt region (dashed orange
line) are shown. The medial portion of the belt region and the rostral pole of the
core in the ventral circular sulcus are not visible. Dashed black line defines por-
tion of cortex cut away. AS, arcuate sulcus; CS central sulcus; INS, insula; LS,
lateral sulcus; STG superior temporal gyrus; STS, superior temporal sulcus. (B)
Architectonic fields by parvalbumin immunohistochemistry of auditory cortex. The
core fields are the most darkly stained. The caudal belt fields are moderately dark.
[Kaas and Hackett, 2000a] (C) A schematic image illustrating the connectivity of
different core auditory regions [Jasmin et al., 2019].

The parabelt fields along with belt, in turn, establish connections with more distant

cortex in the superior temporal gyrus, superior temporal sulcus, and prefrontal cor-

tex [Plakke and Romanski, 2014, Kaas and Hackett, 2000b]. Each early cortical area

receives a distinctive combination of inputs from multiple thalamic nuclei. Notably,

the ventral nucleus of the medial geniculate complex primarily projects to areas in

the core region, the dorsal divisions broadly project to the belt and parabelt regions,

and the medial nucleus projects extensively to all three regions. Consequently, the

auditory cortex in mammals is confined to adjoining areas in the temporal region,
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as observed in various mammalian species.

1.1.2 Information Flow Beyond Auditory Cortex: Connec-

tions with higher-order regions

Beyond the primary auditory cortex, the flow of auditory information extends

into an intricate and specialized network of interconnected regions, contributing

to a myriad of auditory functions and interactions with other cognitive processes

[Plakke and Romanski, 2014, Kaas and Hackett, 2000b]. This complex pathway in-

volves the lateral belt cortex, the parabelt auditory cortex, and connections with

frontal and temporal regions. The auditory information is processed through two

main streams known as the ventral and dorsal streams, which originate from op-

posite ends of the auditory belt [Plakke and Romanski, 2014]. The rostral parabelt

connects with the more rostral portions of the superior temporal gyrus, likely serving

mainly auditory functions. Similarly, the caudal parabelt connects with the cortex

of the caudal end of the superior temporal gyrus, also implicated in auditory pro-

cessing. This organization of processing streams extends further into the prefrontal

regions (See Fig. 1.3). The rostral principal sulcus, inferior convexity, and the lateral

orbital cortex, including orbital and ventrolateral areas of the prefrontal cortex, are

connected with the rostral superior temporal gyrus, the rostral belt, and the rostral

parabelt. On the other hand, dorsolateral regions like the dorsal periarcuate cortex

and the caudal principal sulcus, along with a small connection with caudal inferior

convexity, are connected with the caudal belt and caudal parabelt. Notably, the

connections to the prefrontal cortex are stronger in late auditory cortex, suggesting

a cascade of lighter to stronger projections to the prefrontal cortex from early to late

auditory processing regions. This arrangement implies separate processing pathways

for spatial (where) and non-spatial auditory information (what). Further supporting
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this notion, distinct anatomical projections from different auditory regions to pre-

frontal targets suggest that the auditory regions are associated with functions akin

to the visual domain, where DLPFC and VLPFC are responsible for visuo-spatial

and visual object processing, respectively. The parabelt also projects to four major

regions of the frontal lobe, including the cortex near or within the frontal eye field,

which is significant for directing gaze toward objects of interest, as spatial locations

often correlate with visual interest. Moreover, the orbitalfrontal cortex, a multimodal

region involved in assigning value to stimuli and the reward system, also responds to

auditory stimuli [Hackett, 2011].

Figure 1.3: Processing streams efferents from auditory cortex [Rauschecker, 2021].

Furthermore, in humans, the auditory processing beyond the primary cortex be-

comes even more complex and intricate. As we ascend the hierarchy of the auditory
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pathway, the anatomical connections among different regions become highly special-

ized and nuanced, far from a streamlined process. However, the challenge lies in the

limitations of directly studying these connections in humans. To truly comprehend

the intricate flow of auditory information to the prefrontal cortex, a fundamental

prerequisite is understanding which parts of the temporal lobe are indeed auditory-

responsive. This crucial knowledge remains elusive, leaving the organization of the

human auditory cortex somewhat uncertain and sketchy. Further advancements in

non-invasive neuroimaging techniques, such as functional magnetic resonance imag-

ing (fMRI) and electroencephalography (EEG), offer hope for investigating human

auditory processing with higher resolution. By combining these methods with inno-

vative paradigms and computational models, we could unravel the complex network

of auditory connections, filling in the gaps in our understanding of auditory pro-

cessing in the human brain. This pursuit holds promise not only for enriching our

knowledge of auditory cognition but also for advancing our comprehension of the

broader mechanisms underlying human sensory and cognitive functions.

1.2 Functional representation of auditory system

When we conduct experiments to study how the brain responds to tasks we often

observe distinct deflections in brain activity compared to the baseline or background

neural activity. These deviations aren‘t just fluctuations but specific patterns of

neural responses that provide valuable insights into the brain‘s information process-

ing mechanisms. We employ a set of quantifiable and parameterized measures to

decipher the intricacies of underlying brain processing and the corresponding neu-

ronal configurations at play during auditory tasks. In essence, these metrics serve

as the analytical instruments to decode the functional and structural attributes of

the brain‘s response to auditory stimuli. For instance, these metric are often used to
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quantify the magnitude, timing, and spatial distribution of neural responses. There

are various metrics and measures used to study and quantify different aspects of

brain function and information processing.

• Electroencephalography (EEG) Metrics: EEG measures electrical activity of

synchronised postsynaptic potentials of pyramidal neurons using electrodes

placed on the scalp. Metrics derived from EEG include:

– Neural oscillations: rhythmic patterns of neural activity categorized into

frequency bands such as delta, theta, alpha, beta, and gamma.

– Event-Related Potentials (ERPs): electrical responses of the brain that

are transient but time-locked to the onset of the stimulus.

• Functional Magnetic Resonance Imaging (fMRI) Metrics: Blood oxygen level-

dependent (BOLD) signal is readily used to identify activated brain regions

during tasks or at rest.

• Functional Connectivity: Statistical inter-dependencies in activity between dif-

ferent brain regions. Assess how different brain regions communicate and in-

teract, often using measures like coherence, cross-correlation, or graph theory

metrics.

• Neurophysiological Metrics: These include measures like spike rate, synaptic

activity, and firing patterns, elucidating the electrical properties and activity

of neurons and neural networks.

Given the temporal nature of sound, neural oscillations in particular serves as a

crucial approach to understanding auditory processing [Giraud and Poeppel, 2012].

Neural oscillations synchronize with the temporal patterns of auditory stimuli, form-

ing the basis of auditory perception [Ding et al., 2015]. These oscillations encode
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various sound attributes, such as pitch, timbre, and rhythm, and their synchroniza-

tion enables the brain to decode complex auditory information.

1.2.1 Neural oscillations

Neural oscillations, also known as brain rhythms or brainwaves, are rhythmic pat-

terns of synchronized electrical activity generated by the collective behaviour of

large populations of neurons in the brain. These oscillations occur across a wide

range of frequencies, from slow oscillations in the delta band (0.5 - 4 Hz) to faster

gamma oscillations (30 - 100 Hz). Each frequency band is associated with specific

cognitive and behavioural states, reflecting the dynamic nature of neural process-

ing [Kösem and van Wassenhove, 2017a, Kösem and van Wassenhove, 2017b]. The

rhythmic firing of neurons within specific brain regions leads to the emergence

of oscillatory patterns, which can propagate and synchronize across function-

ally related brain areas. Neural oscillations serve as a temporal code, provid-

ing a framework for the precise timing of neuronal firing and communication

[Roß et al., 2002, Buzsáki and Chrobak, 1995, Ding et al., 2017]. They play a fun-

damental role in the organization and coordination of brain networks, facilitating

the integration of information across different brain regions. Synchronization of neu-

ral oscillations is thought to enhance the efficiency of information processing and

communication, allowing for the integration of distributed sensory inputs and the

binding of different features of stimuli into coherent perceptual experiences.

Mechanistic basis of neural oscillations The mechanistic basis of neural os-

cillations lies in the interactions between excitatory and inhibitory neurons within

neural circuits, as well as the intrinsic properties of individual neurons and the con-

nectivity patterns between brain regions [Buzski, 2006, Hutcheon and Yarom, 2000,

Wang, 2010]. Several key mechanisms contribute to the generation, synchroniza-
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tion, and regulation of neural oscillations. Reciprocal synaptic connections between

neurons within a network facilitate the synchronization of neural firing, creating

positive feedback loops that allow for the propagation of oscillatory activity across

functionally related brain regions. Additionally, gap junctions, enabling direct elec-

trical coupling between neurons, contribute to the synchronization of neural oscil-

lations [Buzsáki and Wang, 2012]. Neurons possess intrinsic membrane properties,

such as ion channel conductances and time constants, that influence their firing

patterns. Some ion channels exhibit resonance at specific frequencies, promoting

rhythmic firing and contributing to the generation and maintenance of oscillatory

activity. Pacemaker neurons are a specialized group of neurons with intrinsic rhyth-

mic firing patterns, acting as local oscillators. They can drive oscillatory activity

within their local circuitry and synchronize with neighbouring neurons, contribut-

ing to larger-scale neural oscillations. The architecture and connectivity of neural

circuits play a vital role in shaping the frequency and synchronization of oscillatory

activity. The coordinated activity of large populations of neurons within specific

brain circuits and networks gives rise to neural oscillations across a range of fre-

quencies [Buzsáki and Draguhn, 2004]. Neural oscillations can also be modulated by

external inputs and sensory stimuli [Lakatos et al., 2019]. Sensory inputs can entrain

and phase-lock neural oscillations, aligning them to the timing of external events.

Additionally, neuromodulators, such as dopamine and serotonin, can modulate the

excitability of neurons and influence the strength and timing of oscillatory activity.

Neural oscillations during speech and music processing

Neural oscillations play a critical role in the processing of speech and music in the

brain, facilitating the efficient and coherent communication of auditory information.

Different aspects of speech and music processing are associated with specific neu-

ral oscillatory patterns, reflecting the dynamic nature of these cognitive functions
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[Gnanateja et al., 2022]. During speech processing, neural oscillations in the theta

and alpha frequency bands (4 - 8 Hz and 8 - 13 Hz, respectively) are particularly

relevant [Baar et al., 2000]. Theta oscillations have been linked to the segmenta-

tion and parsing of speech sounds, helping the brain to identify meaningful units in

continuous speech [Giraud and Poeppel, 2012]. They are thought to contribute to

speech comprehension and language processing by enabling the temporal organiza-

tion of phonemes and words. Alpha oscillations, on the other hand, are involved

in inhibiting irrelevant sensory inputs, fostering focused attention on speech stimuli

[Klimesch, 2012]. They help filter out background noise and enhance the percep-

tion of speech sounds, especially in noisy environments. Alpha oscillations are also

associated with anticipatory processing, predicting upcoming speech content and

facilitating speech comprehension. In music processing, neural oscillations in the

gamma frequency range (30 - 100 Hz) play a prominent role. Gamma oscillations

are thought to be crucial for the integration of different musical elements, such as

melody, rhythm, and harmony [Malekmohammadi et al., 2023]. They enable the

binding of these elements into a coherent musical experience, allowing the brain to

process and appreciate complex musical patterns. Moreover, neural oscillations are

involved in cross-modal interactions during both speech and music processing. For

example, in speech processing, visual inputs from lip movements during lip-reading

can entrain and phase-lock with auditory oscillations, enhancing speech comprehen-

sion [Kumar et al., 2016]. Similarly, in music processing, visual cues from musicians‘

gestures can synchronize with auditory oscillations, enhancing the emotional and

cognitive impact of the musical experience. In the motor cortex, research has shown

that beta oscillations are involved in the entrainment of movement to a regular beat

[Fujioka et al., 2015, Chang et al., 2018]. This can be observed in the form of in-

creased beta power in the motor cortex when people tap their foot or move along

to a rhythm. Overall, neural oscillations play a fundamental role in the efficient
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processing and integration of auditory information during speech and music percep-

tion. The dynamic interplay between different frequency bands enables the brain to

segment, organize, and bind auditory elements, contributing to the rich and nuanced

experience of speech and music. Understanding the neural oscillatory mechanisms

involved in speech and music processing provides valuable insights into the neural

basis of human communication and creativity. Moreover, this knowledge has prac-

tical implications for improving speech and music processing in individuals with

communication disorders or hearing impairments.

These neural oscillatory responses are known to align with the temporal structure of

speech, known as neural entrainment observed in the brain during speech processing

[Riecke et al., 2018, Lakatos et al., 2019, Ding et al., 2015]. It refers to the synchro-

nization of neural oscillatory activity with the rhythmic patterns present in speech

signals. When we listen to speech, the brain actively aligns its neural responses to the

temporal structure of the incoming speech sounds. This synchronization allows the

brain to precisely track the rapid changes in speech sounds, such as phonemes and

syllables, which are crucial for understanding the meaning and intent conveyed in

the spoken language. The process of neural entrainment is not passive but rather dy-

namic and interactive. The brain‘s oscillatory activity adapts and tunes itself to the

timing and rhythm of the speech stream in real-time [Roß et al., 2002, Pöppel, 1997].

As a result, neural responses become optimally poised to capture and process relevant

speech information, ensuring efficient speech comprehension. Neural entrainment is

particularly prominent in brain regions involved in speech processing, such as the

auditory cortex and the superior temporal gyrus. These regions demonstrate height-

ened activity in response to specific speech rhythms and exhibit enhanced neural

synchronization during speech perception [Ding et al., 2015]. Moreover, neural en-

trainment is not restricted to the auditory domain. Recent research suggests that

visual speech cues, such as lip movements and facial expressions, can also drive neu-
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ral entrainment [Joon Kim et al., 2007, Siever, 2007]. This audiovisual entrainment

allows the brain to integrate information from both the auditory and visual modal-

ities, further enhancing speech comprehension and enabling us to decipher complex

speech signals even in noisy or challenging listening environments.

1.2.2 Hemispheric specialization

Hemispheric specialization, also known as lateralization, refers to the phenomenon

where certain cognitive functions and sensory processing are predominantly han-

dled by one hemisphere of the brain [Toga and Thompson, 2003]. For most right-

handed individuals and a large proportion of left-handed individuals, language pro-

cessing, including speech perception and production, is primarily lateralized to the

left hemisphere of the brain. This left hemisphere dominance for language is ev-

ident in the organization of the brain‘s language areas, such as Broca‘s area and

Wernicke‘s area, which are typically located in the left frontal and temporal lobes,

respectively [Morillon et al., 2010a]. Broca‘s area is involved in speech production

and articulation, while Wernicke‘s area is crucial for language comprehension and

the processing of grammatical structures. Connections between these areas and

other language-related regions facilitate the flow of information required for language

processing [Giraud and Poeppel, 2012]. In contrast, the right hemisphere plays a

complementary role in language processing, particularly in aspects of language re-

lated to prosody, emotional and intonational content, and discourse comprehension

[Güntürkün et al., 2020]. Additionally, the right hemisphere is involved in the pro-

cessing of metaphorical language and the comprehension of ambiguous language cues.

Regarding music processing, hemispheric specialization is more complex. While both

hemispheres contribute to music processing, the right hemisphere is generally more

involved in the perception of melody, timbre, and emotional aspects of music. The
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right hemisphere is particularly crucial for processing pitch patterns and recogniz-

ing melodic contours [Yurgil et al., 2020, Koelsch, 2011]. On the other hand, the

left hemisphere plays a larger role in the processing of rhythm, temporal aspects

of music, and the analysis of harmonic structures. Language and music process-

ing also interact in the brain, as evidenced by shared neural networks for syntax

processing in language and musical structure analysis. The study by Albouy et al

explores the brain‘s sensitivity to spectrotemporal modulation and its implications

for hemispheric asymmetry in processing speech and melody [Albouy et al., 2020].

The findings of

Figure 1.4: Brain asymmetry for speech and music is mediated by distinct sensitivity
to spectrotemporal modulation. Functional MRI data reveals that the left auditory
regions are responsible for neural decoding of speech, while the right auditory re-
gions for melody processing. The effects of degradation on perception mirrored their
impact on neural classification [Albouy et al., 2020].
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the study revealed a clear hemispheric specialization in the auditory cortex for

processing auditory information. Deterioration of temporal cues mainly affected

speech component understanding but not melody comprehension, while degradation

of spectral signals influenced melody discrimination but not speech comprehension

[Albouy et al., 2020]. Speech content was primarily decoded in the left auditory cor-

tex and was impaired by temporal deterioration, while melodic content was decoded

predominantly in the right auditory cortex and was adversely affected by spectral

degradation (see Fig. 1.4). These findings indicate that the left and right auditory

cortices are connected to enhanced resolution in temporal and spectral modulation,

respectively, showcasing their specialized roles in processing different aspects of au-

ditory stimuli.

1.3 Structure to function

The functional metrics, as previously introduced in section 1.2, serve as invaluable

tools in unraveling the intricacies of the brain‘s information processing mechanisms.

These metrics, which provide insights into the dynamic neural responses during

cognitive tasks, are often a direct outcome of the structural wiring of the brain.

A prime example of this interplay between structure and function can be found

in the phenomenon of contralateral dominance in functional responses within the

primary auditory cortices during monaural condition [Langers et al., 2005]. This

dominance is rooted in the structural organization of the auditory pathway, where

auditory signals cross over, resulting in the preferential activation of contralateral

brain regions in response to monaural stimuli [Langers et al., 2005, Ross et al., 2005].

Zooming out to the whole-brain level, these structural connections provide the scaf-

fold that shapes various aspects of functional processing. There has been sub-

stantial evidence on the role of SC in information transfer between brain regions
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[Honey et al., 2007], shaping network topology [Bullmore and Sporns, 2009], and

mediating synchronization and coherence of neural activity [Stam et al., 2007]. At

this macroscopic level structural connectivity in the brain refers to the physical

wiring and anatomical connections between different brain regions. These con-

nections play a crucial role in brain function, as they form the structural frame-

work that allows for communication and information exchange among various neu-

ral networks. The brain‘s structural connectivity is primarily established during

early development and continues to undergo modifications throughout life based

on experience and learning. One of the key functions of structural connectiv-

ity is facilitating efficient information processing and integration across the brain

[Mǐsić et al., 2015, Abeysuriya et al., 2018]. Nerve fibers, known as axons, form bun-

dles called white matter tracts that connect different brain regions. These tracts

serve as highways for transmitting electrical signals and information between neu-

rons. The strength, density, and efficiency of these connections influence how effi-

ciently information can travel through the brain, enabling the brain to perform com-

plex cognitive tasks, sensory processing, and motor control. Moreover, structural

connectivity underlies the formation and maintenance of functional networks in the

brain. Regions that are structurally connected tend to form functional networks that

work together to perform specific tasks or cognitive functions [Cabral et al., 2011,

Sporns, 2010, van den Heuvel and Sporns, 2013, Sporns et al., 2004]. For example,

the default mode network, responsible for self-referential thinking and daydream-

ing, is a functional network that emerges from structurally connected regions.

Structural connectivity is also closely linked to brain plasticity and adaptabil-

ity. Learning, memory, and skill acquisition are associated with changes in struc-

tural connectivity [Sporns, 2011]. New experiences and learning can lead to the

formation of new connections or the strengthening of existing ones, allowing the

brain to adapt and optimize its functioning based on the demands of the environ-
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ment. There are several studies reported structural connectivity of the brain with

electrophysiological [Finger et al., 2016, Scrascia et al., 2014, Filatova et al., 2018],

fMRI [Cabral et al., 2011] and behavioural responses [Feng et al., 2021]. For ex-

ample, the structural connectivity between the primary auditory cortex and the

secondary auditory cortex is thought to play a crucial role in the processing of

basic auditory features such as pitch, timbre, and harmony [Griffiths et al., 2000,

Plakke and Romanski, 2014]. Similarly, the structural connectivity between the pri-

mary visual cortex and the secondary visual cortex is thought to play a crucial

role in the processing of basic visual features such as color, shape, and move-

ment [Bressler, Steven L and Nakamura, 1993]. On the other hand, more abstract

and higher-level features of the environment, such as meaning, context, and emo-

tion, require a more complex and dynamic interplay between different regions of

the brain. These features are thought to be processed by distributed networks of

brain regions that are connected through both structural and functional connec-

tions [van den Heuvel and Sporns, 2013, Mǐsić et al., 2018, Sporns, 2010]. However,

as we move to more abstract and higher-order features, it becomes more difficult to

assign them to specific regions of the brain and more likely to involve distributed

networks of regions, which are connected through both structural and functional

connections. These networks are thought to involve the dynamic interaction of dif-

ferent regions of the brain, which work together to process more complex and ab-

stract information. For example, the processing of meaning in language requires the

coordination of neural activity between regions involved in phonetic, lexical, and

semantic processing, as well as regions involved in attention, working memory, and

executive control [Morillon et al., 2010b, Kösem and van Wassenhove, 2017c]. Sim-

ilarly, the processing of emotion in music requires the coordination of neural ac-

tivity between regions involved in auditory processing, regions involved in the per-

ception of pitch and rhythm, and regions involved in the processing of emotional
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valence [Wang et al., 2023, Di and Biswal, 2019]. This lateralization is thought to

be a result of the structural and functional properties of the brain, such as the

patterns of connectivity between regions and the distribution of neural popula-

tions that are specialized for processing different features. Furthermore, disrup-

tions in structural connectivity have been linked to various neurological and psychi-

atric disorders. Conditions like Alzheimer‘s disease, multiple sclerosis, and autism

spectrum disorders often involve alterations in the brain‘s structural connections,

which can lead to impairments in cognition, sensory processing, and motor functions

[Fonseca et al., 2015, Scrascia et al., 2014]. In summary, structural connectivity pro-

vides the physical substrate for efficient communication between brain regions, sup-

ports the formation of functional networks, and underlies the brain‘s adaptability

and learning capabilities. Understanding the complexities of structural connectivity

and its relationship with brain function is essential for advancing our knowledge of

the brain‘s organization and its implications for health and disease.

1.4 Scope of the thesis

The scope of this thesis is to comprehensively explore auditory processing by inte-

grating concepts of oscillations, lateralization and structural connectivity of human

brain. These elements encompass the foundation of cortical activity in the primary

auditory cortices, the role of distinct oscillations and their lateralization, and the in-

fluence of structural connectivity on guiding functional responses. In the subsequent

chapters, specific objectives will be pursued to achieve a coherent understanding of

auditory cortical processing. These objectives include

• Investigating mechanistic basis of right hemispheric dominance of 40 Hz ASSR.

• Role of bilateral primary auditory cortices in mediating hemispheric special-
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ization of melody and speech.

• Investigating structural-connectivity derived functional attributes in causal

outflow from primary auditory cortices.

In the 2 chapter, we establish the presence of hierarchical cortical network during pro-

cessing of a very basic auditory stimuli composed of pure tones, commonly known to

generate auditory steady-state response. We successfully validate the presence of con-

tralateral dominance in the primary auditory cortices during monaural stimulations.

Furthermore, we find causal outflow from bilateral primary auditory cortices (PAC)

are central to the right hemispheric dominance during processing of periodic tonal

stimuli. In that chapter, we standardize tools such as source localization, Granger

causality and laterality analysis that are required to characterize neural underpin-

nings of the auditory processing during different auditory environments. Building

upon these analysis and findings, we hypothesize role of causal outflow from primary

auditory cortices in mediating hemispheric specialization of melody and speech, two

most important human auditory communication skills. In chapter 3, we aimed to

investigate the frequency-specific outflow from the PAC during speech, melody and

ASSR conditions. We employed electroencephalography (EEG) to record neural

activity while 30 participants selectively attended to either the speech or melodic

content of ecologically valid a cappella songs. We reconstruct source activity uti-

lizing subject-specific anatomy of brain and investigate the laterality in the causal

outflow from PAC. In the chapter 4, we explore the mechanistic basis of the hemi-

spheric specialization of melody and speech. We record diffusion magnetic resonance

imaging (dMRI) data, from the same participants recorded in study 3, to constrain

the outflow from the PAC in a neuro-dynamic whole-brain connectome model. Build-

ing upon the findings of these studies to disambiguate between thalamo-cortical and

cortico-cortical auditory inputs on corresponding network we undertook a Transcra-
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nial Alternating Current Stimulation (tACS) study. By stimulating PAC by tACS

we aim to causally entrain large-scale network and examine how these propagation

leads to hemispheric lateralization. In a pilot study, we record EEG while 40 Hz si-

nusoidal alternating current is applied to a participant‘s right PAC. By delving into

these interconnected aspects, this thesis aims to shed light on the intricate workings

of auditory cortical processing and its implications for understanding how the brain

perceives and processes auditory stimuli.
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Large-scale functional network

undelie right hemispheric

dominance of 40 Hz ASSR

The material presented in this chapter has been previously published as Kumar

N, Jaiswal A, Roy D, Banerjee A. Effective networks mediate right hemispheric

dominance of human 40 Hz auditory steady-state response. Neuropsychologia. 2023

Jun 6;184:108559. doi: 10.1016/j.neuropsychologia.2023.108559. PMID: 37040848.

2.1 Introduction

Auditory steady-state response (ASSR) is a phase-locked oscillatory response to pe-

riodic sound recorded from the scalp [Picton, 2013, Zhang et al., 2013]. ASSRs can

be identified by the frequency-based analysis, exhibiting a sharp rise in spectral

power and phase-locking across trials at the frequency of periodicity. In the litera-

ture, ASSRs have been reported widely to be elicited maximally at a stimulation fre-
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quency of 40 Hz [Galambos et al., 1981, Hari et al., 1989, Pastor et al., 2002]. More-

over, ASSRs can be detected readily at a single participant level and do not show

gender-specific differences among right-handed participants [McFadden et al., 2014,

Melynyte et al., 2017]. Due to its robustness and reliability, 40 Hz ASSR is widely

used for theoretical and clinical research, e.g., temporal auditory processing, screen-

ing hearing threshold, and measurement of consciousness during global anaesthesia

[Farahani et al., 2020, Haghighi et al., 2018, Niepel et al., 2020], etc. Additionally,

40 Hz ASSR is also used as a biomarker in certain neuropsychological disorders like

schizophrenia and autism [O’Donnell et al., 2013]. Speech and music on the other

hand both elicit complex and broad-band responses within the auditory pathway.

The Auditory Steady-State Response (ASSR) stands out as an ideal candidate due

to its capacity to generate robust and high signal-to-noise ratio responses. Here we

use ASSR to first establish auditory processing centers, mapping functional networks,

and uncovering key attributes of auditory information processing.

In general, the processing of sensory stimuli requires coordinated interactions

among specialised brain regions that are distributed across the hierarchal cor-

tical networks [Bressler and Menon, 2010a, Fries, 2005]. Lithari and colleagues

have reported the emergence of a frequency-specific large-scale network during

the visual steady-state response, indicating synchronized activity across multi-

ple regions of the brain in response to visual stimulation [Lithari et al., 2016].

Therefore, studying the pattern of information flow among specialised brain re-

gions would allow us to understand the neural basis of ASSRs. There is

converging evidence that neural generators for 40 Hz ASSRs predominantly

lie in the right superior temporal gyri (STG) [Kim et al., 2019] and bilat-

eral primary auditory cortices [Bohórquez and Özdamar, 2008, Pantev et al., 1996,

Ross et al., 2005, Steinmann and Gutschalk, 2011] in addition to sub-cortical regions

[Herdman et al., 2002, Poelmans et al., 2012, Steinmann and Gutschalk, 2011]. De-
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spite the growing consensus on the regions involved in the activation of 40 Hz

ASSRs, the interactions and information flow among the relevant nodes of ASSRs

are yet to be fully investigated. Importantly, the patterns of information flow be-

tween relevant brain regions in the distributed auditory hierarchy are indicative of

directed functional connectivity, which offers a refined picture of the communica-

tion channels and a critical role of the underlying drivers and followers involved in

the generation of ASSRs [Bressler and Menon, 2010b, Lithari et al., 2016]. For ex-

ample, a unidirectional information flow from one sensory node to a higher-order

will reveal hierarchical processing. On the other hand, a bidirectional connectivity

between cortical nodes would imply a parallel and simultaneously recurrent pro-

cessing scheme. For instance, the flow of information between left and right audi-

tory cortical nodes are mediated via strong cortico-thalamocortical feedback loops

[Das et al., 2021]. Thus, an overall characterization of the direction of information

flow in auditory pathways within and between two hemispheres will reveal that

the functional organization between two hemispheres is governed by the symme-

try/asymmetry of auditory stimulation during auditory tone processing tasks. Mo-

tivating our work from previous studies that suggest lateralization enables more

efficient information transfer among specialised brain regions during language pro-

cessing [Toga and Thompson, 2003], we explore ASSR lateralization at the cortical

source space level and interactions among key cortical sources. We hypothesize that

causal interactions between cortical sources will provide critical insights into underly-

ing brain networks and their task-specific functional organization. Following studies

demonstrating right hemispheric dominance of non-linguistic/tonal/musical auditory

sounds [Toga and Thompson, 2003, Zatorre et al., 2002], we further hypothesize that

the underlying effective brain network interactions [Friston, 2011] should also reflect

the presence of hemispheric dominance. Furthermore, the directionality of effective

connections will reflect the hierarchical aspects of underlying information processing.

25



Chapter 2. Large-scale functional network undelie right hemispheric dominance of
40 Hz ASSR

Earlier studies have reported right hemispheric dominance in source activation dur-

ing 40 Hz ASSRs. Existing evidence from structural and functional studies sug-

gests that 70% of ascending auditory inputs from either ear cross at the brainstem

level and 30 % remain on the same side [Hackett, 2015, Kaas and Hackett, 2000b,

Langers et al., 2005]. Consequently, one would expect a contralateral dominance in

primary auditory cortical (PAC) response during monaural stimulation conditions.

Now, it‘s naturally intriguing how the information, particularly during the monaural

right condition, that enters the left PAC is eventually redistributed to a specialised

centre present in the right hemisphere. Transcortical communication through the

corpus callosum (CC) has been suggested to compensate for this asymmetric in-

put to achieve hemispheric specialization during the processing of distinct features

of auditory stimuli [Aboitiz et al., 1992, Cammoun et al., 2015]. This can be very

well experimentally validated by monaural stimulations. Hence, according to the

principle of contralateral dominance, the monaural right would evoke a greater re-

sponse in the left PAC than the monaural left condition [Andoh et al., 2015]. In the

present work, we record human electroencephalography (EEG) during 40 Hz AS-

SRs during binaural and both monaural left and right stimulation conditions. We

reconstruct trial-wise source activity employing subject-wise anatomical structure

by co-registering EEG with individual subject Magnetic resonance imaging (MRI)

data. We first confirm the presence of ASSR and its well-known right hemispheric

dominance co-existing with contralateral dominance of early auditory processing.

Subsequently, we characterize effective network interactions using spectral Granger‘s

causality among sources of ASSRs.
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2.2 Materials and methods

2.2.1 Participants

Twenty-one healthy, right-handed human volunteers (16 males, 5 females, age range

22-39 years old; mean ± SD = 28 ± 2.10) participated in this study. The right-

handedness of participants was verified by the Edinburgh Handedness Questionnaire

based upon a cut-off of 60-100. All the volunteers reported no medical history of au-

diological, neurological or psychiatric disorders. All of them had normal or corrected

to normal visual acuity. Informed consent was given by all the volunteers in a format

approved by the Institutional Human Ethics Committee (IHEC) of National Brain

Research Centre that confirms the guidelines set by the Declaration at Helsinki. All

participants were fluent in at least two languages, Hindi and English, but some were

familiar with another language of Indian origin.

2.2.2 Experimental design

Stimuli consisted of sinusoidal tones of frequency 1 kHz and 25 ms duration, presented

40 times per second. Wherein, each tone of 25 ms had 2 ms fade in and faded out

period (Fig. 2.1 A: Upper panel). Each trial comprised of 1s “On” block (auditory

stimulation) period followed by 1s “Off” block (silent) period (Fig. 2.1A). A total

of 100 trials were presented for each kind of auditory stimulation, i.e., monaural and

binaural. In total, four experimental conditions, each lasting 200 s, were performed

in the following order- 1) a baseline condition in which the volunteers were not given

any tonal stimuli; 2) Binaural (in both ears); 3) Monaural left (only through left

ear); 4) Monaural right (only through right ear). The time interval between each

condition was set to 100 s (silent). Auditory stimuli were created and presented in

Stim2 software (Compumedics, Inc., USA) at 85 dB sound pressure level.
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Figure 2.1: Steady-state response: (A) Stimuli (Upper panel): 25 ms of pure tone
(1 kHz frequency), presented 40 times in a second during 1 s ON block interspersed
by two OFF blocks (silent). Lower panel: Group-level ERPs of mastoid channels
(M1 as orange and M2 as sky-blue) having oscillatory response in the time window
of 250-1000 ms relative to the onset of periodic auditory stimuli. (B) ITPC of
single channel (D) Group-level power spectrum showing sharp enhancement at 40
Hz during monaural left (magenta), monaural right (green), binaural stimuli (blue)
relative to baseline (black) condition. (C) Phase-angle distribution at 40 Hz during
auditory stimulation and baseline conditions. The arrow in the middle of each circle
represents strength of ITPC.
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The specific value of intensity was chosen to have reliable ASSR responses in all

participants based on a prior pilot study in our group. Participants were instructed to

stay still in a sitting position, fixate on a visual cross displayed on a computer screen

and listen to the tones. Continuous scalp EEG was recorded when the volunteers

were performing the experiment.

2.2.3 Data acquisition

EEG data were recorded using 64 Ag/AgCl sintered electrodes mounted in an elastic

head cap according to the international 10-20 system. All recordings were done in a

noise-proof isolated room using NeuroScan (SynAmps2) system (Compumedics Inc,

USA) with a 1 kHz sampling rate. Abrasive electrolyte gel (EASYCAP) was used

to make contact between EEG sensors and scalp surface, and impedance was kept

below 5 kΩ in each sensor. The default EEG system-assigned reference electrode

was placed at the vertex (Cz) and the ground electrode at the forehead (AFz). The

electrode locations were obtained relative to three fiducials at the nasion and left

and right preauricular points using a 3D digitizer (Polhemus Inc., Colchester, VT,

USA).

2.2.4 Pre-processing of EEG signals

EEG data analysis was performed with Chronux (http://chronux.org/), EEGLAB

[Delorme and Makeig, 2004], FieldTrip (http://fieldtriptoolbox.org) and cus-

tom MATLAB scripts (www.mathworks.com). EEG data was imported in MATLAB

using EEGLAB from Neuroscan raw files. Continuous long-time EEG time series

were bandpass filtered to retain frequencies between 3 and 48 Hz. Thereafter, eye-

blinks and heartbeat artefacts were removed from EEG data using independent com-

ponent analysis in-built in EEGLAB after careful visual inspection. The temporal
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window of steady-state activity was identified from the grand mean event-related

potentials (ERPs) of both mastoid channels [Coffey et al., 2016] (Fig. 2.1). Hence,

baseline corrected epochs of 750 ms from “On” blocks were extracted from each

trial, excluding the first 250 ms of the time series from the onset of auditory stimuli.

Furthermore, simple threshold-based artefact rejection was applied to exclude the

remaining noisy epochs. Hence, epochs having a voltage greater than ±85 µv were

discarded. After artefact rejection, none of the epochs from monaural conditions of

one participant survived the thresholding. Therefore, we removed the data of that

participant from further analysis. Thereafter, we re-referenced the EEG signal to

common mode average reference, followed by combining trials from every partici-

pant into a single pool for group analysis at the sensor-level. On average less than 5

trials were removed per subject. In total we have recorded 2000 trials from all par-

ticipants per condition (100 trials X 20 participants). The surviving trials numbers

were 1980 in binaural; 1975 for monaural left and 1980 trials for monaural right.

2.2.5 Identification of ASSRs at sensor-level

Inter-trial phase clustering

Inter-trial phase clustering (ITPC) was employed to ensure the presence of the phase-

locked oscillatory response of 40 Hz. ITPC quantify the degree of non-uniformity

or clustering in the distribution of oscillatory phase across trials at a particular

frequency [Palva et al., 2005]. The value of ITPC range between zero and one, with

one being perfect phase consistency across trials and zero being complete uniformity.

Mathematically, ITPC is defined as

ITPCf =
∣∣1
n

n∑
n=1

eiθ
∣∣ (2.1)
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wherein, 1
n
Σn
n=1 represents an average of complex vector eiθ across n trials; eiθ is

Euler‘s formula wherein θ is phase angle at frequency f derived from complex Fourier

coefficients. We calculated the ITPC of all the channels for every conditions and

selected a channel with maximum ITPC at 40 Hz (Fig. 2.1B). To assess the signif-

icance of phase clustering, the observed ITPC values were compared with a critical

value ITPCcrit computed at the significance level of p = 0.01 (Bonferroni corrected).

The critical value corresponding to p-value was obtained as [Zar, 1999, Cohen, 2019]

ITPCcrit =
√
−log(p)× n−1 (2.2)

where n is the total number of trials. ITPC values higher than ITPCcrit were

considered statistically significant.

Power spectrum

The power spectrum was computed using Chronux function mtspectrumc.m scripts

at each sensor, trial, and condition. First, power spectra were calculated in the fre-

quency range of 3-48 Hz (∼ 1 Hz smoothing), and grand averaged for all channels

and trials. Subsequently, t-statistic were calculated as test statistics between au-

ditory stimulation and baseline conditions at the frequency of interest i.e., 40 Hz,

followed by a statistical evaluation of observed t-statistic employing a permutation

test. The procedure involves 1000 time shuffling of the trials among both conditions

and measuring t-statistic in each permuted data sets. Thereafter, a histogram is

plotted, comprising all 1000 t-statistic from permuted data creating a null distribu-

tion [Maris and Oostenveld, 2007]. Observed t-statistic were then thresholded to the

99th quantile of the respective null distribution corresponding to p = 0.01.
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Laterality analysis

Hemispheric asymmetry in brain responses was quantified using laterality index (LI),

which is the difference between right hemisphere (RH) and left hemispheric (LH)

responses normalized by the sum of responses in both hemispheres.

LI =
RH − LH
RH + LH

(2.3)

The value of LI ranges between +1 and -1. Wherein, +1 represents complete right

hemispheric dominance, -1 for complete left hemispheric dominance and 0 for a

bilaterally symmetric response. Trial-wise median of 40 Hz spectral power and ITPC

was calculated over right and left hemispheric sensors, excluding midline sagittal

plane electrodes. Furthermore, to assess the statistical significance of LIs, the 95 %

confidence interval (CI) was calculated as

CI = (µ+ td.f. × S.E., µ− td.f. × S.E.) (2.4)

where µ is the mean of data, t is the inverse of Student‘s t cumulative distribution

function at corresponding d.f. (degree of freedom), and S.E. is the standard error of

the mean. Moreover, to examine whether lateralization indices of different auditory

conditions have equal means, we performed one-way ANOVA on the distribution

of LI values of different stimulation conditions, followed by controlling for multiple

comparisons employing the Tukey-Kramer post-hoc test.

2.2.6 Source localization of ASSRs

Evoked potentials

Early auditory potentials were reconstructed employing time domain exact low-

resolution brain electromagnetic tomography (eLORETA) [Pascual-Marqui, 2007].
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Similar to frequency domain eLORETA as described comprehensively below. We

have utilised individual anatomy to reconstruct source waveforms while restricting

the analysis to bilateral primary auditory cortices. Wherein, the respective coor-

dinates of sources were obtained for both Heschl‘s gyri based on the Automated

anatomical labelling (AAL) atlas [Rolls et al., 2015] (See figure 2.3 A; left panel).

Sensor-level covariance matrices were computed for each condition from the 20 ms

time series centred around N100 response. Remaining procedure kept same as fre-

quency domain source analysis (See below) to obtain subject and trial wise source

waveforms for each condition. Thereafter, laterality indices were computed for N100

amplitude between bilateral auditory cortices followed by statistical testing of asym-

metry in individual condition and difference between each condition as per methods

2.2.5.

Frequency specific sources

Converging evidence suggests that utilising individual brain anatomy yields better

source localization [Coffey et al., 2016]. Hence, source-level analysis was performed

by co-registering EEG sensor locations to MRI-guided fiducial points. Exact low-

resolution brain electromagnetic tomography (eLORETA) [Pascual-Marqui, 2007]

was used to calculate the three-dimensional spatial distribution of source activity

underlying 40 Hz ASSRs. Earlier research demonstrated that eLORETA yields a

favourable performance when false positives were considered [Halder et al., 2019].

eLORETA employs distributed source modelling and estimates the current source

density across brain volume by minimizing the surface Laplacian component during

the construction of the spatial filter [Pascual-Marqui, 2007]. Additionally, eLORETA

does not rely upon any assumption regarding the number of underlying sources while

having excellent control over the suppression of false positives during the detection of

sources [Halder et al., 2019]. Hence, source analysis employing eLORETA was per-
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formed using the FieldTrip toolbox [Oostenveld et al., 2011] implemented in MAT-

LAB and connectivity analysis was done by customized MATLAB scripts.

The ingredients to construct a frequency domain eLORETA spatial filter are the

forward model and the cross-spectral matrix of sensor data. The forward model also

called the volume conduction model for the head define how an electrical current

propagates across brain and would be recorded at the sensor level. Therefore, geomet-

rical properties of the head including surface description of brain, skull and scalp were

derived from subject-specific T1-weighted anatomical MRI scan and used for forward

modelling based on the boundary element method [Fuchs et al., 2001]. Subsequently,

employing channel position leadfields for individual subjects were computed. Con-

struction of leadfield requires description of locations known as grids on which the

leadfields are calculated. Here, we first create 11, 000 template grids that were de-

fined according to Automated anatomical labelling (AAL) atlas [Rolls et al., 2015].

Subsequently, these template grids were warped to individual MRI yielding 11,000

subject-specific grids arranged in normalized space. The leadfield matrix was com-

puted at each grid in 3 orthogonal directions.

Moreover, we computed sensor-level cross-spectral matrices for each condition from

the SSR time series (250 : 1000 ms), same as used for the sensor-level analysis (Fig.

2.1 A). Thus, we computed a spatial filter employing the subject-specific forward

model and sensor-level cross-spectral matrix for each condition. A common spatial

filter was computed from combined data i.e., trials from all four conditions were

grouped into a single pool. Since, common filter employs cross-spectral matrices

from all conditions hence, attenuating filter-specific variability during inverse mod-

elling, i.e., the observed difference between different conditions is attributed only

to the differences in conditions, not due to differences in the spatial filter. Subse-

quently, sensor-level cross-spectra were projected to the spatial filter obtaining the

source power across trials, space and orientation. Since we do not have any prior
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assumption about the orientation of the underlying source activity, the largest eigen-

value was selected as grid power from strongest dipole orientation that corresponds

to the maximum variance of data. Consequently, subject and trial wise distribution

of source power across brain volume was obtained for each condition. Thereafter,

pairwise t-statistic was computed as test statistic for each grid between auditory

stimulation and baseline condition. Since there was total 11, 000 grids hence would

have required same number of statistical comparisons, therefore, to circumvent the

multiple comparison problem we down-sampled the source powers from grid space

to parcel space by taking median t-statistic of each parcel. Further, the promi-

nent sources for each subject were selected after thresholding at the 95th quantile

from distribution of t-statistic of parcels and further tested for statistical signifi-

cance by non-parametric statistic as described above for sensor-level 40 Hz spectral

power (see section 2.2.5). Finally, for visualization purpose, all grids from significant

parcels were visualized after rendering onto a cortical surface from the Colin27 brain

template provided in the FieldTrip toolbox (http://fieldtriptoolbox.org).

2.2.7 Source activity reconstruction and connectivity anal-

ysis

The source-level Fourier coefficients were reconstructed by projecting the trial-wise

sensor-level cross-spectral matrix to the spatial filter of significant parcels. These

spectral coefficients were utilized to calculate global coherence, ITPC and Granger‘s

causality among sources.

ITPC

We calculated ITPC from same areas based on the Fourier coefficients obtained from

frequency domain eLORETA. Thereafter, laterality indices of ITPC were computed
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between bilateral auditory cortices followed by statistical testing of asymmetry in

individual condition and difference between each condition as per methods 2.2.5.

Global Coherence

Global coherence analysis was employed to identify the presence of a brain-wide large-

scale functional network [Cimenser et al., 2011, Fonseca et al., 2015]. The global co-

herence can be calculated from the cross-spectral matrix using the leading eigenvalue

method in two steps. First, cross-spectrum was computed as:

SXij (f) =
1

n

n∑
r=1

Xr
i (f)Xr

j (f)∗ (2.5)

where Xr
i and Xr

j are trial (r) and frequency (f) specific Fourier coefficients from

the sources i and j, respectively and asterisk represents matrix transposition and

complex conjugate calculated over n trials. Second, global coherence was computed

as the ratio of the maximum eigenvalue and the sum of eigenvalues calculated from

the cross-spectral matrices.

CGlobal(f) =
S1(f)∑k
r=1 Sr(f)

(2.6)

where CGlobal(f) is the global coherence, S1(f) is the largest eigenvalue and the de-

nominator Σk
r=1Sr(f) represents the sum of eigenvalues of the cross-spectral matrix.

The non-parametric statistical testing at p < 0.01 was performed to evaluate the

significant differences in global coherences at 40 Hz during the auditory stimulation

conditions. The differences in coherences between task and baseline condition were

quantified using coherence Z-statistic [Maris and Oostenveld, 2007].
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where d.f.1 and d.f.2 denote the degrees of freedom, C1(f) and C2(f) are coherence

values during the first and the second conditions, respectively, at the frequency of

interest (f = 40 Hz). The resulting Z-statistic was considered an observed test statis-

tic, which was tested for significance after comparison with the null distribution as

described above

Z =
(tanh−1(|C1(f)|))− (1/d.f.1 − 2)− (tanh−1(|C2(f)|))− (1/d.f.2 − 2)√

(1/d.f.1 − 2) + (1/d.f.2 − 2)
(2.7)

where d.f.1 and d.f.2 denote the degrees of freedom (2 ∗ N ∗ K), respectively in

the first and the second condition while C1 and C2 are coherence values at the

frequency of interest (f = 40 Hz). Resulting Z value was considered as an observed

test statistic that was validated for significance by successful rejection of the null

hypothesis. For creating a null distribution random partitions were done 1000 times

by shuffling trials of two conditions and measuring coherence in each permuted

data. Afterwards, a histogram is plotted comprising all 1000 coherence values from

permuted data. Observed value is then compared with the 99th and 1st quantile

of the respective permutation distribution to validate if it is smaller than 0.1 or

larger than 99.9 (threshold values were set to 1%). If observed test statistic survive

threshold testing, then it reflect that the probability of getting this result by chance

is 0.01. Henceforth difference is considered as significant [Maris et al., 2007].

Directed sub-networks of ASSRs

After confirming the presence of a synchronized network, we calculated the mul-

tivariate Granger causality (GC) to establish the direction and strength of causal

influence [Granger, 1969]. Subject-level nonparametric GC in the spectral domain
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were calculated among sources [Granger, 1969, Dhamala et al., 2008]. This involved

nonparametric spectral matrix factorization (using Wilson‘s algorithm) of the cross-

spectral density to yield transfer function H and the noise covariance matrix Σ.

Pairwise GC from Y to X at the frequency (f) can then be expressed as

GY→X(f) = ln
Sxx(f)

Sxx(f)− (Σyy −
Σ2

xy

Σ2
xx
|Hxy|2)

(2.8)

where Sxx(f) is the total spectral power (auto-spectrum) and the denominator rep-

resents intrinsic power (total power minus the causal contribution) of the “effect”

signal [Geweke, 1982]. Please note that since ASSR being phase-locked to the ex-

ternal signal, can result in spurious coherence estimation among sources. However,

the calculation of GC reflects “true” connectivity, since, if the information content is

same between X and Y , the GC value would be nearly zero. Particularly, as per eq

2.8, Y should contain additional information that is useful in predicting the future

values of X, over and above that can be predicted from the past values of X alone.

Thereafter, measuring causality in both directions, one can locate the “source” and

“effect” regions of the brain by comparing significant GC values in both directions.

Since GC values follow unknown distribution, we adopt non-parametric statistical

testing to assess significant GC spectral peaks among GC pairs [Brovelli et al., 2004].

First, 1000 permuted data sets were generated by independently shuffling trials from

each source pair. Shuffling trial order in this way abolished task-specific information

while keeping the data pool same. Thereafter, GC was computed, and the maxi-

mum GC value was selected over the frequency range from each permuted data set

[Ding et al., 2006a]. Subsequently, a null distribution consisting of all GC values was

constructed from the shuffled data set. GC peaks in unshuffled data were considered

statistically significant when the observed GC value reached beyond the 99th quan-
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tile value (p = 0.01) of the null distribution. The multiple comparison problem was

handled by Bonferroni corrections. We have also quantified the relative contribution

of each source in the whole-brain causal network, as number of connections linked

to each source. Mathematically, node degree was calculated as the number of edges

connecting the source normalized by the maximum number causal connections each

source could make i.e., (N − 1) × 2. In our case, we found 6 significant sources,

so any source could maximally make 10 causal connections. Additionally, since our

objective included identifying the role of trans-cortical communication in manifes-

tation of right hemispheric dominance during different stimulation conditions, we

specifically focused on the inter-hemispheric flow. Here, to maximize the number of

measurements, Granger causality was calculated again from all voxels in the left PAC

to all voxels in right STG during different stimulation conditions. Subsequently, we

evaluated the effect on interhemispheric flow during different stimulation conditions

by a non-parametric Kruskal-Wallis test, followed by Tukey-Kramer post-test.

2.3 Results

2.3.1 Presence of ASSRs at sensor-level

In the time domain, evoked potential of mastoid channels showed steady-state ac-

tivity in the time range of 250 - 1000 ms from the onset of periodic auditory stimuli

(Fig. 2.1A: Lower panel). In the frequency domain, we evaluated the power spec-

trum and strength of inter-trial phase clustering (ITPC) during auditory stimulation

and baseline conditions across the frequency range of 3 − 46 Hz. We found sig-

nificant ITPC during all auditory stimulation conditions (p < 0.01) only at 40 Hz

(Fig. 2.1B). Increase in the ITPC was a result of phase clustering around one region

of polar space while the distribution of phase angles is uniform during the base-
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line condition (Fig. 2.1C). Grand mean power spectra averaged over all electrodes

and trials showed significant enhancement of spectral power at 40 Hz in binaural

[t(1970) = 4.19, p < 0.0001], monaural left [t(1970) = 2.28, p < 0.0001] and monau-

ral right condition [t(1970) = 3.19, p < 0.0001] (Fig. 2.1D).

2.3.2 Hemispheric asymmetry

Sensor level

Laterality indices were calculated to quantify the degree of asymmetry during AS-

SRs across different stimulation conditions at sensor level and source level (from

bilateral Heschl‘s gyri; Fig. 2.3 A). At sensor level hemispheric LI were calcu-

lated for both 40 Hz spectral power and ITPC. Wherein, mean LI values were

greater than zero during every auditory stimulation condition suggesting right hemi-

spheric dominance of ASSRs during binaural and both monaural conditions (Fig.

2.2 and Table 2.1). Particularly, for spectral power during the binaural condition,

the group-mean hemispheric laterality index was LI = 0.023 and with 95% lower

and upper confidence interval was 95% CI = [0.010, 0.035]. During the monaural

left condition (LI = 0.019, 95% CI = [0.007, 0.032]) and monaural right condi-

tion (LI = 0.032, 95% CI = [0.019, 0.045]). One-way ANOVA among LI values

across different stimulation conditions showed no significant difference in mean LI

values across conditions (F (2, 5910) = 1.01, p = 0.36). The laterality indices cal-

culated from ITPC values also followed similar pattern Fig. 2.2 B. Specifically,

during the binaural condition, (LI = 0.025, 95% CI = [0.014, 0.036]), monaural left

condition (LI = 0.037, 95% CI = [0.025, 0.048]) and the monaural right condition

(LI = 0.019, 95% CI = [0.008, 0.030]). Moreover, no main effect of auditory condi-

tions was found on mean laterality indices (F (2, 5910) = 2.51, p = 0.08).
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Source level

Source wave forms were low-pass filtered at 20 Hz to avoid distortion of ERP from

high frequency activity. The source waveform analysis revealed a clear N100 response

in both Heschl‘s gyri across all ASSR conditions (Fig. 2.3A). There were significant

Figure 2.2: Hemispheric asymmetry: Group-level hemispheric laterality indices
(LI) distribution for 40 Hz (A) spectral power and (B) ITPC during different stimulus
conditions. The central node in each line represents mean of data while lower and
upper boundary of the line represents the lower and upper limit of 95 % confidence
interval, respectively.

amplitude differences observed between the left and right Heschl‘s gyri, consis-

tent with previous studies. Asymmetry in the responses were quantified using

LI analysis. Particularly, binaural condition showed bilateral response while both

monaural conditions were clearly contralaterally dominant. Particularly, during

binaural condition the group-mean laterality index was LI = 0.020 and with 95

% lower and upper confidence interval was 95% CI = [−0.015, 0.055]. During

the monaural left condition (LI = 0.088, 95% CI = [0.061, 0.115]) and monau-

ral right condition (LI = −0.037, 95% CI = [−0.056,−0.017]). One-way ANOVA
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Table 2.1: Mean and 95 % confidence interval (CI) of laterality indices during differ-
ent auditory conditions. (a) and (b) measured at sensor level. (c) and (d) measured
at source level (Heschl‘s gyri). (C) N100 amplitudes were calculated from source
waveforms derived from time domain eLORETA and (D) ITPC were calculated from
Fourier transforms obtained from frequency domain eLORETA.

(a) Spectral power at 40 Hz from whole hemisphere

Lower CI Upper CI Mean

Binaural 0.011 0.036 0.023
Monaural left 0.007 0.032 0.020
Monaural right 0.019 0.046 0.032

(b) ITPC at 40 Hz from whole hemisphere

Lower CI Upper CI Mean

Binaural 0.014 0.036 0.025
Monaural left 0.025 0.048 0.037
Monaural right 0.008 0.030 0.019

(c) N100 amplitude of Heschl‘s gyri

Lower CI Upper CI Mean

Binaural -0.015 0.055 0.020
Monaural left 0.061 0.115 0.088
Monaural right -0.056 -0.017 -0.037

(d) ITPC at 40 Hz of Heschl‘s gyri

Lower CI Upper CI Mean

Binaural 0.018 0.066 0.042
Monaural left 0.046 0.097 0.071
Monaural right -0.034 0.006 -0.014
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among LI values across different stimulation conditions showed significant difference

in mean LI values across conditions (F (2, 57) = 22.03, p < 0.001). Right hemi-

spheric dominance was observed for binaural condition showing group-mean later-

ality index was LI = 0.042 and with 95% lower and upper confidence interval was

95% CI = [0.018, 0.066]. Though there was significant difference between monaural

left and monaural right condition (p < 0.001), clear contralateral dominance was

only present in monaural left condition i.e., (LI = 0.071, 95% CI = [0.046, 0.097]).

Monaural right response also not clearly left lateralised having mean LI = −0.014,

and 95%(CI = [−0.034, 0.006]). Overall, there was significant difference in mean LI

values across conditions (F (2, 57) = 15.12, p < 0.001).

Figure 2.3: Asymmetry at the primary auditory cortices: A) Location of
left and right Heschl‘s gyri (left panel) and Grand average source waveforms (Right
panel). B and C Mean and 95 % confidence interval of laterality indices of (B) N100
amplitude and (C) ITPC from Heschl‘s gyri.
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Overall, at source level LI were calculated for N100 response and ITPC from bilateral

Heschl‘s gyri to validate the presence of contralaterality effect during monaural con-

dition. In line with earlier studies, clear contralateral dominance in early auditory

potentials was observed for monaural conditions. Particular pairwise p-values that

define effect of auditory conditions on the laterality values obtained from Tukey-

Kramer post-test are listed in Table 2.3.

Table 2.3: Pairwise p-values after multiple comparisons test Mean and 95 % confi-
dence interval (CI) of laterality indices during different auditory conditions. (A) and
(B) measured at sensor level. (C) and (D) measured at source level (Heschl‘s gyri).
(C) N100 amplitudes were calculated from source waveforms derived from time do-
main eLORETA while (D) ITPC were calculated from Fourier transforms obtained
from frequency domain eLORETA.

Group A Group B A) Spectral B) ITPC C) N100 D) ITPC
Power

Binaural Monaural left 0.919 0.300 0.002 0.164
Binaural Monaural right 0.584 0.754 0.011 0.002

Monaural left Monaural right 0.352 0.072 0.000 0.000

2.3.3 Source-level functional organization of 40 Hz ASSRs

Sources of ASSRs

Exact low-resolution brain electromagnetic tomography (eLORETA) was used to re-

construct whole-brain distribution of 40 Hz activity. The source activity was parcel-

lated according to AAL atlas and tested for significance. The locations of significant

sources during monaural left, monaural right and binaural conditions are shown in

Fig. 2.4. Anatomical labels corresponding to significant source and their respective

t-statistic are summarised in Table 2.4. In total, six sources were found significant

at p < 0.001 during every stimulation condition. Interestingly, locations of sources
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were same for binaural and both monaural conditions (see Table 2.4), namely, bilat-

eral Heschl‘s gyri, bilateral precentral gyri, right superior temporal gyrus and right

inferior frontal gyrus (triangular part). Hence, 4 sources were located in right hemi-

sphere and 2 sources in left hemisphere for every stimulation condition. Though,

the sources were same the source power of different regions differed across auditory

stimulation conditions (Table 2.4 and Fig. 2.4).

Figure 2.4: Sources of 40 Hz ASSRs: Source power rendered over cortical surface
derived from Colin27 brain.
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Table 2.4: Anatomical labels (according to AAL parcellation) of 40 Hz ASSRs sources
along with their corresponding power (t-statistic between auditory stimulation and
baseline condition).

Regions Binaural Monaural left Monaural right

Right Heschl‘s gyrus 3.81 3.25 3.46
Left Heschl‘s gyrus 3.69 3.24 3.28
Right Superior temporal gyrus 3.52 3.12 3.31
Right Inferior frontal gyrus 3.39 2.70 3.17
(triangular part)
Right Precentral gyrus 4.01 3.17 3.34
Left Precentral gyrus 3.35 3.01 3.34

Functional brain networks underlying ASSR

Global coherence measures the extent of coordinated neuronal activity over the whole

brain [Cimenser et al., 2011, Kumar et al., 2016]. The enhancement in global co-

herences among ASSR sources was evaluated by nonparametric statistical testing

[Maris and Oostenveld, 2007], employing Z-statistic as the test statistic. In line with

our hypothesis, we observed a stimuli-specific enhancement of global coherence at

40 Hz, revealing a highly selective large-scale synchronization of neuronal assem-

blies at this frequency during binaural [Z(20) = 1.35, p < 0.0001], monaural left

[Z(20) = 1.14, p < 0.0001], and monaural right [Z(20) = 1.17, p < 0.0001] condi-

tions (Fig. 2.5). The increase in whole-brain global coherence motivated for pairwise

connectivity analysis employing Granger causality.
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Figure 2.5: Presence of large-scale network among ASSRs: Enhancement in
global coherence during auditory conditions was measured by z-statistic represent-
ing the normalized difference of coherence in task conditions relative the baseline
condition.

Connectivity plots revealed the organization of directed network interaction during

different auditory conditions (Fig. 2.6; Right panel). Interestingly, at least three GC

interactions were common in all three conditions; namely, 1) Left HG to Right STG,

2) Right HG to Right STG and, 3) Right STG to Right IFG. Specifically, outflows

from bilateral HG reaching to the right STG, consequently involving unidirectional

interhemispheric flow from left HG to right STG. Presence of interhemispheric flow

was in line with our hypothesis of involvement of trans-cortical flow during ASSR.

During the monaural left and binaural conditions, there was bidirectional causal flow

between right HG and right STG. During the binaural and monaural right condition,

the right STG was bidirectionally connected to the right IFG. Node degree of ASSR

sources (see Table 2.6) showed right STG was the most connected source among all

ASSR sources having an average node degree of 0.43 followed by right HG (node de-

gree = 0.17). Specifically, right STG was causally connected with bilateral HG and

right IFG during every ASSR condition. Overall, three nodes from the right hemi-

sphere (HG, STG and IFG) contribute to whole-brain causal network of ASSR while
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left hemisphere had two nodes (HG, Precentral Gyrus). For visualization purpose,

we did not plot GC flow from left HG to left PCG during the monaural left condition.

Additionally, we found that the strength of inter-hemispheric flow was significantly

different between at least two groups (χ(2, 8097) = 80.34, p < 0.0001). Particularly,

both binaural and monaural right were significantly different from monaural left con-

ditions (p < 0.0001) however there was no difference between binaural and monaural

right conditions (p = 0.9). The difference in distributions of inter-hemispheric flow

was visualized by ‘violin.m‘ [Hoffmann, 2015]. The maximum interhemispheric flow

was present during the binaural condition, followed by monaural right and least

during the monaural left condition (Fig. 2.7).
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Figure 2.6: Directionality among recruited sub-networks: Left panel:
heatmaps depicting pairwise GC values among ASSRs sources. 1st and 4th quad-
rant compose of GC pairs within right and left hemisphere, respectively. 2nd and
3rd quadrant depict respective interhemispheric GC flows. Significant GC values
(p > 0.01) tested against surrogate data using a permutation-based non-parametric
statistical test, were bordered by blue boxes. Schematic representation of frequency
specific directed interactions that underlie 40 Hz ASSRs. Each black arrow represents
a causal flow among brain regions denoted by blue nodes.
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Table 2.5: Pairwise list of causally interacting sources pairs along with their respec-
tive causal strengths. Causal interactions among sources identified using Granger
causality and significant causal interactions are illustrated in Fig. 2.6.

From To GC value (10−2)

Binaural
R STG R HG 8.6
R HG R STG 7.3
L HG R STG 7.2
R STG R IFGtriang 4.1
R IFGtriang R STG 4.1

Monaural left
L HG R STG 6.0
R HG R STG 5.1
L HG L PreCG 3.7
R IFGtriang R STG 3.7
R STG R HG 3.4

Monaural right
L HG R STG 8.2
R HG R STG 7.6
R IFGtriang R STG 5.1
R STG R IFGtriang 4.7

Table 2.6: Node degree of ASSRs sources in the whole-brain network of ASSRs during
different auditory stimulation conditions. Fourth column show the average of node
degree calculated as mean of node degree in all 3 conditions.

Source Name Binaural Monaural Monaural Average
left right

Right Superior temporal gyrus 0.50 0.40 0.40 0.43
Right Heschl‘s gyrus 0.20 0.20 0.10 0.17
Right Inferior frontal gyrus 0.20 0.10 0.20 0.17
Left Heschl‘s gyrus 0.10 0.20 0.10 0.13
Left Precentral gyrus 0.00 0.10 0.00 0.03
Right Precentral gyrus 0.00 0.00 0.00 0.00
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Figure 2.7: Interhemispheric causal flow: Variability in the GC strengths from
left primary auditory cortex to the right STG during different auditory conditions.

2.4 Discussion

Our study attempted to reveal the directed interactions that unfold during the en-

trainment from periodic auditory stimuli of tonal nature in brain dynamics. We

validated the presence of right hemispheric dominance of 40 Hz ASSR using spec-

tral analysis and phase-locked components of the ASSR as estimated via Inter-trial

phase clustering (ITPC). The main results of hemispheric lateralizations were same

in both measures as non-phase locked component in ASSRs is very less, reported by

our recent study [Singhal et al., 2023]. Hence, spectral power is mostly attributed to

the phase-locked component of ASSR. The stimuli-driven sources of neuronal oscilla-

tions were present across the hierarchy of cortical auditory pathways Heschl‘s gyrus
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(HG), superior temporal gyrus (STG), precentral gyri, inferior frontal areas corrob-

orating with the previous fMRI, PET and EEG/MEG studies [Farahani et al., 2020,

Poelmans et al., 2012, Reyes et al., 2004, Steinmann and Gutschalk, 2011]. Further-

more, we explored the information flow organization in these structures using effective

connectivity analysis. We found that the right STG serves as an integrative area, re-

ceiving inputs from both primary auditory cortices, wherein information from the left

primary auditory cortex is received via trans-cortical pathways, the organizational

symmetry of which was dependent on the ears being stimulated. Furthermore, our

directional network analysis suggests bidirectional interactions between right STG

and frontal regions may provide efficient information exchange required for a com-

prehensive mapping of the auditory environment that ultimately manifests as right

hemispheric dominance. The present findings may provide not only a network-level

basis for right hemispheric dominance during 40 Hz ASSRs but also a clue about how

the variability in the strength inter-hemispheric flow is dependent on the ear being

stimulated. For instance, due to the pre-existing contralateral dominance, right PAC

receives least auditory input during monaural right condition, and thereby require

greater inter-hemispheric flow to compensate for the asymmetric input.

2.4.1 Sources of ASSR

A significant oscillatory response was seen in bilateral HG during every condi-

tion. HG residing in the primary auditory cortex is known to be the first corti-

cal structure that receives auditory inputs (Hackett, 2015). Both monaural con-

ditions showed contralateral dominance in early evoked potentials (See 2.3). Con-

tralateral dominance of primary auditory areas during monaural stimulations is a

well-established phenomenon reported in several fMRI, PET and EEG/MEG stud-

ies and attributed to the crossing of ascending anatomical fibres at the brainstem
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level [Hackett, 2015, Kaas and Hackett, 2000a, Langers et al., 2005]. In line with

these findings, the observed contralateral dominance of N100 and ITPC measures at

primary auditory cortices during monaural conditions (see Fig. 2.3 and Table S1).

Essentially, both measures are associated with distinct aspect of auditory processing.

For instance, The N100 measure, which is an early auditory potential, showed clear

asymmetry and varied among different auditory conditions (see Table S1 and S2). On

the other hand, an increase in the ITPC is associated with late auditory potentials

that are right hemispheric dominant for 40 Hz ASSR. In addition to the classic audi-

tory pathway, we also report activation beyond the primary auditory cortex, for in-

stance, bilateral pre-central gyri, which is in line with earlier findings on reconstructed

40 Hz ASSRs sources with equivalent dipole modelling [Farahani et al., 2020]. In-

terestingly, significant activation in the right inferior frontal gyrus (triangular part)

(rIFG) was also found during every condition of ASSR. Right IFG, an analogue of

Broca‘s area in the right hemisphere has been suggested to process sound length

and attending to pitch/rhythms [Plakke and Romanski, 2014, Wang et al., 2015].

Though most sources of 40 Hz ASSR are well established, the enhancement of global

coherence among sources in the present study reveals inter-areal brain synchroniza-

tion among sources, a prerequisite of communication among neuronal assemblies

[Bressler and Menon, 2010b, Fries, 2005]. Further analysis of directed information

flow among sources provides a much clearer understanding of the role of observed

sources.

2.4.2 Interhemispheric transfer

During every stimulation condition, there were causal flows originating from both

primary auditory cortices reaching the right STG, consequently requiring an inter-

hemispheric causal flow from the left PAC (Fig. 2.6). There are anatomical fibres
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that support this information flow. In general, interhemispheric transfer of informa-

tion is achieved via the corpus callosum [Andoh et al., 2015]. The corpus callosum

provides a functionally relevant scaffold for mediating proper communication across

both hemispheres. Although the inter-hemispheric flow was present during every

auditory stimulation condition, there was differences in strength of interhemispheric

flow during different conditions (Fig. 2.7). The observed differences in the strength

of interhemispheric pathway during different task conditions suggest its differential

functional requirements. Due to existing afferent structural constraints, irrespective

of the ear being stimulated both PAC receives some amount of acoustic informa-

tion in tandem with the manifestation of contralateral dominance during monaural

conditions [Langers et al., 2005]. The right hemispheric specialization to process

rhythmic features of acoustic input would require transfer of information from left

PAC to specialised centres present in the right hemispheres. Hence, the monaural

right condition would naturally require higher inter-hemispheric flow to compensate

for the early asymmetric inputs. Alternatively, during the monaural left condition,

wherein the information is already dominant in left hemisphere (Fig. 2.3) would

show least involvement of inter-hemispheric flow. The strength of inter-hemispheric

flow was maximum during the binaural condition (Fig. 2.7). In general, binaural

condition requires more trans-cortical communication to integrate incoming bilat-

eral acoustic inputs in addition to the transfer of primary information from PAC to

the secondary auditory cortex. The complexity in dissociation of these two kinds of

information prevents a straightforward explanation of inter-hemispheric flow during

binaural conditions.
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2.4.3 Integrative nature of STG

After initial processing in bilateral HG, information related to ASSR is feedforwarded

to the right superior temporal gyrus (rSTG). Several studies of ASSRs have reported

prominent activations in rSTG [Langers et al., 2005, Mäkelä and Hari, 1987]. We

observed rSTG showing maximum inward causal information flow in the whole net-

work (See Fig. 2.6 and Table 2). This type of causal information flow from primary

sensory areas to intermediate areas of the auditory pathway suggests the integra-

tive nature of rSTG mediating acoustic-pattern analysis. Ross and colleagues pro-

posed that the right auditory cortex process temporal regularities associated with

pitch processing of incoming sound [Ross et al., 2005]. In the context of the earlier

view, rSTG can be considered as a specialised region for detecting regularities in

acoustic input and subsequently sending information to higher-order frontal cortices.

Also, our analyses revealed that rSTG is bidirectionally connected to the right in-

ferior frontal gyrus (BA45). STG to frontal gyrus causal flow can be considered a

bottom-up process, while causal influence from frontal to right STG can be seen as a

top-down modulation or relevant for predicting incoming sensory inputs. Right IFG

(rIFG) areas are known to be associated with identifying features like sound length

and attending to pitch/rhythms plausibly utilising periodic cues received from STG

[Plakke and Romanski, 2014]. Activity in rIFG along with activation in bilateral pri-

mary auditory cortex was also reported by Reyes and colleagues using PET imaging

in response to 40 Hz amplitude modulated (AM) tone [Reyes et al., 2005]. Sev-

eral studies have reported anatomical projections from STG to the frontal cortex

[Hackett, 2011, Kaas and Hackett, 2000b, Plakke and Romanski, 2014]. Wang and

colleagues identified a functional network comprising the frontal cortex and superior

temporal regions that are sensitive to tone repetition patterns, which is associated

with human‘s unique ability for language processing [Wang et al., 2015]. Here we
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show, this fronto-temporal network that is central to processing of periodic structure

of auditory stimuli, is mediated by bidirectional interactions between rSTG and right

frontal regions.

2.4.4 Right hemispheric dominance

The present findings could give us a possible basis for right hemispheric dominance

during 40 Hz ASSRs, as observed in several past studies by exploring the directed

information flow among cortical sources. We argue that the right hemispheric lateral-

ization of 40 Hz can be attributed to the right STG and its bidirectional interaction

with the right frontal region Fig. 2.6. Furthermore, the activation pattern was

similar in every condition, suggesting it as a central network for processing of peri-

odic auditory stimuli and facilitator of brain-wide entrainment of cortical rhythms.

This is in line with the previous finding that suggested tonal or melodic stimuli are

predominantly processed in the right hemisphere while speech and language stim-

uli showed left hemisphere dominance [Albouy et al., 2020, Zatorre and Belin, 2001,

Ross et al., 2005, Zatorre and Gandour, 2008] thus, following the same reverberating

theme of right hemispheric dominance in music processing.

2.5 Methodological considerations

We have employed distributed source modelling based on individual-subject anatomy

to account for variability in participant head size. Our source analysis was not limited

to cortical regions, but we did not detect any significant activations in the subcorti-

cal areas of the brain. However, it should not be assumed that subcortical sources

do not play a role in the whole-brain processing of the ASSR. There are substan-

tial studies about the role of thalamocortical circuits in mediating both auditory-

cortices and generation of ASSR [Lee, 2013, Steinmann and Gutschalk, 2011]. How-
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ever, in our study, the detectability of thalamus and other sub-cortical regions

were limited by several methodological factors. In principle, sub-cortical regions

of the brain are prone to signal cancellation due to their deep location and irregu-

lar cell architecture, causing cortical activity to dominate over sub-cortical activity

[Attal et al., 2007, Fahimi Hnazaee et al., 2020]. Consequently, poor signal-to-noise

ratio for deeper sources [Halder et al., 2019], particularly in estimating the 40 Hz

ASSR as higher frequency phases are more susceptible to distortion during propaga-

tion to the scalp. Emerging studies suggest the possibility of detecting sub-cortical

sources by limiting the source analysis to pre-defined areas or by defining the region

of interest larger than its actual volume [Coffey et al., 2016, Farahani et al., 2021].

However, in our study, both of these approaches would be counter-intuitive as we

did not have prior assumptions about the locations of source-level network dynam-

ics. The influence of sub-cortical activity on whole-brain network auditory processing

could be potentially delineated in a future EEG-fMRI study where source network

locations can be identified over long-time scales from BOLD activity and source-

level EEG time series reconstructed from a spatial-filter that is better receptive to

thalamic signals.

2.6 Conclusion

Comprehensive source-level network analysis provides a plausible explanation of

hemispheric asymmetry of 40 Hz ASSRs during binaural and both monaural condi-

tions. Right hemispheric dominance emerges due to bidirectional flow between the

right STG and right frontal area (see Summary Fig. 2.8). Inter-hemispheric flow

compensates for pre-existing contralateral dominance in early sensory processing to

yield right hemispheric specialization of tonal processes. Overall, while the source

locations and direction of information flow were similar across both monaural and
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binaural conditions, their differential strength of activation underlies the process-

ing of different auditory environments. In the present study, we have established

the tools and methods to uncover the presence of a hierarchical information flow

in the auditory network and found that causal outflow from primary auditory cor-

tices serves as central role in mediating right hemispheric dominance. This study

serves as a foundation and therefore we could move ahead with our main objective

to understand mechanistic basis of hemispheric specialization of melody and speech.

Figure 2.8: Schematic representation of effective networks during ASSR:
Mechanisitc basis of right hemispheric dominance during 40 Hz ASSR. Upper panel:
The figure highlights compensatory inter-hemispheric flow against contralateral dom-
inanace in primary auditory cortices during monaural conditions. Lower panel: bidi-
rectional flow between the right STG and right frontal area
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Chapter 3

Role of primary auditory cortices

in mediating hemispheric

specialization of melody and

speech

3.1 Introduction

The presence of dichotomy or dualism is the one the most fundamental attribute

of the auditory system. It is well-known that the left hemisphere specializes in

speech processing, while the music is predominantly processed in the right hemi-

sphere [Zatorre, 2022]. At the lower sensory level, converging evidence suggests

that the left primary auditory cortex is specifically attuned to rapid temporal

changes associated with language processing, while the right primary auditory cor-

tex is dominant in processing spectral changes associated with music processing

(Albouy et al., 2020; Zatorre and Belin, 2001). However, the causal link of pri-
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mary auditory cortices on the hemispheric specialization remained unresolved. The

auditory system is hierarchically organized, with information flowing from lower-

level sensory regions to higher-order processing centers [Kaas and Hackett, 2000b,

Kaas and Hackett, 2000b]. The primary auditory cortices (PAC) are the first cortical

structure to receive ascending auditory inputs exhibiting a rich repertoire of oscilla-

tory activity [Gourévitch et al., 2020, Hackett, 2011]. These oscillations in distinct

frequency bands are involved in encoding pitch, temporal envelope, and spectral

content, as well as transforming them into perceptual experiences and subsequent

communication within the auditory system. The PAC is interconnected with spe-

cialized higher-order cortical regions, such as the superior temporal gyrus, superior

parietal lobule, and prefrontal cortex, enabling the transmission of oscillatory in-

formation across multiple frequency bands. This integration of motor, syntactic,

and working memory information constructs a coherent representation of the au-

ditory scene [Kösem and van Wassenhove, 2017b, Plakke and Romanski, 2014]. In

our previous work in chapter 2, we show frequency-specific outflow from the PAC

are central to the right hemispheric dominance of auditory steady-state response

(ASSR) [Kumar et al., 2023]. Therefore, the oscillatory activity in PAC and subse-

quent propagation dynamics are required to be specific to the nature of the auditory

stimuli. Particularly, communication dynamics across different regions enable the

binding of disparate features, the segmentation of auditory streams, and the forma-

tion of hierarchical representations.

Speech and music, being two fundamental forms of human auditory communication,

require specialized processing in the brain [Hickok and Poeppel, 2007, Zatorre, 2022].

The distinctive characteristics and processing requirements of speech and music ne-

cessitate the specific transmission of oscillatory information from the PAC to higher-

order regions. Speech processing involves the encoding of fast temporal changes

of auditory stimuli, while music comprises rapid spectral changes containing com-
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plex melodic, rhythmic, and harmonic structures. Consequently, the perception of

speech and music is determined by the organization of oscillatory activity in the

PAC, as well as the subsequent propagation dynamics for processing auditory infor-

mation in each domain. Understanding how this oscillatory information is transmit-

ted to higher-order regions is crucial for comprehensive mapping of the complex

dynamics underlying auditory perception and hemispheric specialization. Phase

synchronization and coherence coupling mechanisms have been proposed as plau-

sible mechanisms for information transfer and communication between brain regions

[Fries, 2005]. These mechanisms involve the synchronization of oscillatory activity

in higher-order regions with the PAC, promoting coordinated processing of audi-

tory information [Bauer et al., 2020, Berger et al., 2019]. The synchronization en-

sures temporally aligned oscillatory phases required for the integration of auditory

information across different frequency bands, enabling the perception of rhythmic

patterns and extraction of temporal cues.

From a theoretical perspective, causal complementarity and input asymmetry can

explain the findings such as increased left hemispheric dominance of language pro-

cessing is associated with increased right hemispheric dominance of face process-

ing [Brederoo et al., 2020] and motor processing [Gotts et al., 2013]. Unequal in-

volvement of inter-hemispheric communication for different functions via integrative

mechanisms [Gotts et al., 2013] have been proposed as key players from the vantage

point of brain network mechanisms. This work takes the help of the fact that bi-

hemispheric human auditory processing network exhibit pleiotropy - left hemispheric

language processing and right hemispheric melody processing [Albouy et al., 2020],

to understand how input asymmetries affects intrinsic structural network that facil-

itates the propagation of neuroelectric signals coordinate dynamically over time.

In the present study, we aimed to investigate to investigate the frequency-specific

outflow from the PAC during speech, melody and ASSR conditions. We employed
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electroencephalography (EEG) to record neural activity while participants selectively

attended to either the speech or melodic content of ecologically valid a cappella

songs. We reconstruct source activity utilizing subject-specific anatomy of brain and

investigate the laterality in outflow from PAC. Understanding the precise mecha-

nisms underlying the transmission and integration of oscillatory activity in speech

and melody processing contributes to our comprehensive mapping of the complex

dynamics involved in auditory perception.

3.2 Methods

3.2.1 Participants

Thirty healthy participants (14 males, 16 females, age range 22-34 years old; mean

±SD = 27± 3.14) participated in this study. All participants were right-handed, as

confirmed by the Edinburgh Handedness Questionnaire with a cut-off score of 60-100,

and reported no history of audiological, neurological or psychiatric disorders. All had

normal or corrected-to-normal visual acuity. Informed consent was obtained from all

participants in a format approved by the Institutional Human Ethics Committee

(IHEC) of National Brain Research Centre, in accordance with the guidelines set by

the Declaration of Helsinki. All participants were fluent in at least two languages,

Hindi and English, with some having knowledge of another language of Indian origin.

3.2.2 Experimental procedure

3.2.3 Auditory stimuli

We have used two types of auditory stimuli 1.) amplitude modulated tone and

2.) a cappella songs. To generate Auditory steady-state response participants were
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presented with hundred trials of auditory stimuli comprising pure sine waves of fre-

quency 500 Hz amplitude modulated at 40 Hz. The total duration of the auditory

experiment was 200 s, wherein each trial constituted 1 s of auditory stimulation with

1-s interstimulus silence interval. The second set of auditory stimuli consisted of

100 a cappella songs prepared by Albouy and colleagues, and have been used and

described in more detail in their earlier reports [Albouy et al., 2020]. Particularly,

the a cappella songs composed of 10 tones, each with an identical rhythm, and ten

English sentences composed of 10 syllables each. Sentences were modified to adjust

with the rhythm of the melodies. All melodic and sentence materials were combined

in all possible combinations to form 100 a cappella songs. The resulting set of 100

songs had a mean duration of 4.1 seconds.

3.2.4 Paradigm and experimental setup

The EEG session consisted of 3 blocks. First, the participants underwent 5 minutes

of EEG recording in a resting state while fixating one a cross displayed at the center

of screen. Second, after being verbally instructed about the task the participants

were presented with pairs of a cappella songs via earphones and were instructed to

compare them. To ensure that participants focused their attention on speech or

melody during the presentation of a cappella song, they were engaged in a match-to-

sample task (See Fig. 3.1). The trial started with a visual cue indicating the relevant

domain (sentence or melody) for 1200 milliseconds. Subsequently, the first song was

presented, followed by a 1000 millisecond interstimulus interval (ISI), and then the

second song was presented. Throughout the entire duration of the songs and ISI, a

fixation cross was presented at the center of the screen. Following the presentation

of the second song, participants were presented with a question on the screen, re-

quiring them to assess whether the two speech contents were identical or different,
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irrespective of the melody to which they were sung. In the case of melody trials, this

process was reversed, with the judgment based solely on the melody, independent of

the sentence content. Participants were required to respond by selecting the right

arrow key on the keyboard when the domain was the same and the left arrow key

for different. The response window lasted for 2000 milliseconds, and participants

received no feedback. The total duration of a trial was approximately 12 seconds,

and the total duration of the experimental block was 20 minutes. There were four

types of combinations included: (1) both speech and melody were different in the

song pair, (2) sentence was the same but the melody was different, (3) sentence was

different and the melody was the same, and (4) both sentence and melody were the

same. Each combination had 24 trials, resulting in a total of 96 trials presented.

The sentence/melody questions and same/different responses were pseudo-randomly

presented, with each stimulus type uniformly distributed over the entire experiment.

Auditory stimuli were played binaurally via sound tubes at an overall intensity of

approximately 60 dB SPL. Presentation software (Neurobehavioral Systems, Berke-

ley, CA, USA) was used to control stimulus presentation and record participants

responses. Continuous electroencephalography (EEG) was recorded in a noise atten-

uated isolated room using a BrainVision Recorder acquisition system, which included

an actiCHamp module with 63 active channels placed according to the International

10-20 electrode placement system. SuperVisc electrolyte gel (EASYCAP) was used

to establish contact between the EEG sensors and the scalp. Continuous EEG data

were acquired at a sampling rate of 1 kHz, and the impedance of each sensor was

kept below 10 kΩ. The reference electrode was positioned at the vertex (Cz), and the

forehead (AFz) electrode was selected as the ground. The electrode locations were

obtained with respect to three fiducials at the nasion and left and right preauricular

points using a 3D digitizer (Polhemus Inc., Colchester, VT, USA).
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Figure 3.1: Task design: A.) Auditory stimuli. Ten original melodies (Left panel)
and ten English sentences (Right panel). The English sentences were modified to
match the melodies’ rhythm, and subsequently, the melodic and sentence components
were combined together to create a cappella songs [Albouy et al., 2020]. B.) A pair
of a cappella song were presented in two conditions. 1.) speech and 2.) melody.
They grey boxes represent visual screen.
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3.2.5 EEG Preprocessing

Initial EEG data analysis was performed with EEGLAB (Delorme and Makeig,

2004), FieldTrip (http://fieldtriptoolbox.org) and custom MATLAB scripts

(www.mathworks.com). Firstly, using EEGLAB continuous EEG data from each

auditory block and resting state were bandpass filtered between 2-48 Hz and in-

dependent component analysis was employed to eliminate eyeblinks, muscular, and

heartbeat artifacts. The ASSR block trials were epoched from the entire 1 second

from the onset of stimuli, while for the a cappella song block, first hit trials were

identified and segregated into two groups for speech and melody trials and epoched in

4 seconds from the onset of song. In addition, non-overlapping 1 second and 4 second

with 50 % overlapping time segments from the resting state data were epoched to be

utilized as the baseline condition for the ASSR and song blocks, respectively. After

detrending the trials, threshold-based artifact rejection was applied at ±80 µV . Fol-

lowing the preprocessing steps, an average of 97 trials from the ASSR block, 81 trials

(out of 96) from the speech block, and 69 trials (out of 96) from the melody block

were retained. The preprocessed EEG data were then re-referenced to a common

average reference and downsampled to 250 Hz for further processing.

3.2.6 Source-level analysis

To estimate frequency-specific oscillatory sources, we utilized exact low-resolution

brain electromagnetic tomography (eLORETA) as described in chapter 2. First for

forward modelling, MRI data from each participant (see 4.2 in Chapter 4 for MRI

data aquistion) was segmented into three tissue types, and meshes were created with

3000, 2000, and 1000 vertices for brain, skull, and scalp, respectively. The bound-

ary element method (BEM) was employed to generate the realistic volume conduc-

tion model using the OpenMEEG package [Fuchs et al., 2001, Gramfort et al., 2010].
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Subsequently, the EEG channels were aligned with the BEM model based on 3 fidu-

cials present in both Polhemus data and MRI. Thereafter, leadfields were created for

3 orthogonal directions using the sensor positions and the volume conduction model.

The location of vertices within the leadfield was defined based upon the participant-

specific structural data parcellated according to Desikan-Killiany atlas in freesurfer

[Desikan et al., 2006], with an average resolution of 4 mm. Subsequently, the cross-

spectral for each frequency band (2− 48 Hz) were computed from the preprocessed

sensor level data over the entire time window for each condition for ASSR, speech,

melody, and baseline conditions. Frequency-specific spatial filters were computed

from combination of the forward model and cross-spectral matrix for each condition.

Separate spatial filters were constructed for ASSR, speech, and melody conditions,

with 1-second and 4-second rest trials serving as baseline conditions, respectively. To

reduce dimensionality, principal component analysis was performed on the spatial fil-

ters of vertices belonging to individual parcels, resulting in the spatial filters of 68

regions of interest. The trial-wise sensor-level cross-spectra were then projected to

the spatial filter, obtaining subject and trial-wise distribution of source power across

the brain volume for each condition. Next, pairwise t-statistics were computed be-

tween auditory stimulation and respective baseline conditions. Prominent sources for

each subject were selected by thresholding at the 95th quantile from the distribution

of t-statistics of parcels. Hence, we obtained frequency-specific sources during 40

Hz ASSR, speech and melody conditions. Since spectral response during speech and

melody are broadband spectral power were averaged in different frequency bands for

delta, theta, alpha, beta and gamma.
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3.2.7 Granger causality analysis

From the source we obtained the reconstructed Fourier coefficients of entire frequency

range. Thereafter, subject-wise multivariate Granger causality (GC) was calculated

in the spectral domain to determine the causal outflow from PAC to whole-

brain as described in chapter 2, eq. 2.8. The resutling GC spectra of speech and

melody condition were divided into respective frequency bands, i.e., delta (2−4 Hz),

theta (4− 8 Hz), alpha (8− 13 Hz), beta (13− 30 Hz), and gamma (30− 48 Hz)

bands. Significant frequency bands were identified from non-parametric statisti-

cal testing [Brovelli et al., 2004]. First, 1000 permuted data sets were generated

by independently shuffling trials between resting condition and auditory conditions.

Thereafter, GC was computed, and the maximum GC value was selected over the

frequency range from each permuted data set [Ding et al., 2006b]. Subsequently, a

null distribution consisting of all GC values was constructed from the shuffled data

set. GC bands in unshuffled data were considered statistically significant when the

observed GC value reached beyond the 99th quantile value (p = 0.01) of the null

distribution. The multiple comparison problem was handled by Bonferroni correc-

tions. Since, the key hypothesis of the manuscript was to investigate the input to

the auditory network which is inevitably gated by left and right PAC, we restricted

our analysis of GC to only the causal outflows from bilateral PAC to other nodes of

the auditory network.

3.2.8 Laterality analysis

To evaluate the extent of asymmetry in outflow from the primary auditory cortex

(PAC) during auditory conditions, we employed computing the Laterality Indices

(LI)(see 2.2.5). By adding the Granger causality (GC) outflow from both the right

and left PAC, we obtained a spatial distribution of the GC outflow. The LI was then
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calculated as the difference between the GC outflow in the right region and the left

region, divided by the sum of the outflows from both regions.

3.3 Results

In this empirical study, EEG data were collected from a group of 30 participants

during three auditory conditions, melody, speech, and 40 Hz ASSR. The laterality of

frequency-specific Granger causality outflow from bilateral primary auditory cortices

was estimated.

3.3.1 Target regions of PAC

Frequency-specific source activities were reconstructed using eLORETA at Desikan

Kiliany regions for each subject during speech, melody, ASSR and resting condi-

tions. Multivariate Granger causality analysis revealed significant (p < 0.01) out-

flow from bilateral primary auditory cortices at distinct frequency ranges including

delta, theta, beta and gamma during both speech and melody conditions (Figure 3.2

and Table 3.1). The significant sources for ASSR were observed specifically at 40

Hz, whereas speech and melody conditions exhibited distinct frequency bands with

some sources showing responses at multiple frequency bands. The spatially averaged

frequency-spectrum of outflow was similar in speech and melody condition (Figure

3.2; Right panel). The distribution of significant sources across different frequency

bands and conditions is summarized in Table 3.1. Overall, the regions that show

activations included superior temporal, middle temporal lobe, precentral, Broca‘s

areas (pars opercularis and pars triangularis), superior frontal, supramarginal and

Insula. Moreover, activations in Lateral orbitofrontal and parahippocampal were

exclusive to ASSR. Notably, the left pars opercularis showed significant activation

across all frequency bands during speech conditions, indicating its involvement in
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left hemisphere dominance during language processing. On the other hand, the right

pars triangularis exhibited significant activation across all frequency bands specifi-

cally during melody conditions, suggesting its role in right hemispheric dominance

during melody processing (Figure 3.2).

Figure 3.2: Sources of 40 Hz ASSRs: Source power rendered over cortical surface
derived from Colin27 brain.

3.3.2 Asymmetry in functional responses

The laterality indices revealed varying degrees of hemispheric dominance across

different brain regions and auditory conditions. The comprehensive list of re-

gions, along with their corresponding 95 % confidence intervals and means are

provided in Table 3.2. From the perspective of hemispheric specialization during
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Table 3.1: Frequency-specific target regions of bilateral primary auditory cortices
during different auditory conditions and their Granger causality strength.

Region Speech Melody ASSR

Delta Theta Beta Gamma Delta Theta Beta Gamma 40 Hz

L Superior temporal 0.189 0.103 0.085 0.106 0.203 0.121 0.068 0.072 –
L Precentral 0.176 0.090 0.072 0.093 – – 0.059 0.063 0.203
L Pars opercularis 0.148 0.081 0.044 0.084 – – 0.067 – 0.187
L Middle temporal – 0.094 – 0.073 – 0.114 – 0.092 –
L Pars triangularis – 0.088 – 0.091 – 0.109 0.046 0.068 –
L Supramarginal – 0.072 – 0.075 – – – 0.069 –
L Insula – 0.062 – – – – – 0.061 –
L Superior frontal – – – – – 0.107 0.042 0.079 –
R Superior temporal – 0.085 0.080 0.083 0.211 0.147 0.082 0.102 0.218
R Precentral – 0.089 0.069 0.068 0.201 0.134 0.073 0.089 0.197
R Pars opercularis – 0.070 – – 0.196 – 0.058 – 0.187
R Pars triangularis – 0.076 – – 0.198 0.132 0.069 0.087 –
R Middle temporal – 0.067 – 0.097 – 0.138 – 0.088 –
R Supramarginal – 0.064 – 0.069 – 0.116 – 0.070 –
R Insula – – – 0.065 – 0.107 – – –
R Superior frontal – – – 0.170 – 0.125 0.073 0.076 –
R Lateral
orbitofrontal cortex – – – – – – – – 0.209
R Parahippocampal – – – – – – – – 0.205
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speech, melody and ASSR, certain regions exhibited complete lateralization, indi-

cating that both the upper and lower confidence intervals lie on the same side of

zero (Figure 3.3). Particularly, during ASSR the right hemispheric dominance was

present in superior temporal gyrus (STG) with mean laterality index was LI = 0.13

and with 95 % lower and upper confidence interval was 95% CI = [0.08, 0.18];

lateral orbitofrontal (LI = 0.31, 95% CI = [0.17, 0.44]) and parahippocampal

(LI = 0.19, 95% CI = [0.05, 0.32]). For the speech condition during beta frequency

range, the left hemispheric dominance was present in STG (LI = −0.03, 95% CI =

[−0.04,−0.02]), precentral (PrC) (LI = −0.03, 95% CI = [−0.05,−0.01]), pars op-

ercularis (LI = −0.07, 95% CI = [−0.10,−0.05]) and in gamma range STG (LI =

−0.13, 95% CI = [−0.15,−0.10]), PrC (LI = −0.16, 95% CI = [−0.24,−0.08]),

pars opercularis (LI = −0.22, 95% CI = [−0.31,−0.13]). For the melody condi-

tion during beta frequency, the right hemispheric dominance was present in STG

(LI = 0.10, 95% CI = [0.06, 0.14]), PrC (LI = 0.11, 95% CI = [0.03, 0.18]), pars

triangularis (LI = 0.20, 95% CI = [0.05, 0.35]) and during gamma range, STG

(LI = 0.17, 95% CI = [0.12, 0.22]), PrC (LI = 0.17, 95% CI = [0.04, 0.31]), pars

triangularis (LI = 0.12, 95% CI = [0.03, 0.22]).
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Figure 3.3: Frequncy-specific asymmetry: Laterality indices during speech (ma-
genta), melody (green) and ASSR (blue) conditions. The error bars denote 95 %
confidence interval of mean.
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3.4 Discussion

The present study investigate task induced electrophysiological response during

speech, melody, and ASSR conditions. Particularly, with a specific focus on the

role of the primary auditory cortices (PAC) and their outflow in governing hemi-

spheric specialization. This study establish a causal link between PAC dynamics and

hemispheric specializations. Firstly, we reconstruct the subject-wise source activity

and compute Granger causality outflow from bilateral PAC in distinct frequency

bands. The findings reveal a common frequency-specific outflow from PAC in both

speech and melody conditions, reaching to distinct regions reflecting domain-specific

organization of the auditory system. Furthermore, the laterality analysis of causal

inflow in target regions complies with well-established hemispheric dominance of left

hemisphere for speech, right hemisphere for melody, and right hemisphere for ASSR,

suggesting role of PAC in respective hemispheric specializations.

3.4.1 Hierarchical and domain-specific organization of the

auditory system

The primary auditory cortices (PAC), located in the temporal lobes, serve as the ini-

tial cortical hub receiving ascending auditory inputs, primarily from the thalamus,

and exhibit oscillatory responses to complex sounds within a frequency range of ap-

proximately 1 to 100 Hz [Gourévitch et al., 2020]. Different frequency bands have

been associated with different types of processing, with gamma activity often linked

to higher-level processing, such as attention and perception, while lower-frequency

activity may be more involved in basic sensory processing. Moreover, the PAC is

involved in the transformation of acoustic features (such as frequency information)

into percepts (such as pitch height and pitch chroma) for melody [Koelsch, 2011].

However, the specific patterns of activity can vary depending on the characteris-
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tics of the stimulus and the context in which it is presented. Albeit, dominant

in contralateral PAC, ascending auditory inputs are represented in both PAC. Au-

ditory information thereafter is propagated to specialized regions across the brain

volume. The subsequent propagation from PAC is dependent on the content of

the auditory stimuli. Processing in later regions can be observed by oscillatory re-

sponse in specialized regions. Higher-order auditory regions, such as the secondary

auditory cortex and the superior temporal gyrus (STG), are thought to be special-

ized for processing higher-frequency information, such as the formants of speech

and the timbre of musical instruments. These regions are thought to play a crit-

ical role in the analysis of the spectral and temporal properties of sounds, and

they are activated by the complexity and variability of sounds. Albouy and col-

leagues demonstrated the sensitivity of the left PAC to speech features and the

right PAC to melody features [Albouy et al., 2020]. On the other hand, there is

substantial evidence of left hemispheric specialization for speech and right hemi-

spheric specialization for music [Zatorre and Belin, 2001, Zatorre et al., 2002]. In

our study, we provide causal evidence for the contribution of PAC in the hemispheric

specialization of speech and melody. The information flow from sensory cortex to

frontal cortex represents a bottom-up process [Ding et al., 2021]. This contributes

to our understanding of the hierarchical organization of auditory processing, as it

reveals the flow of oscillatory information from lower-level sensory regions to higher-

order cognitive regions. Although the oscillatory patterns observed during speech

and melody conditions are similar, characterized by frequency-specific outflows from

the bilateral PAC, the specific regions involved in receiving these oscillations dif-

fer between speech and melody conditions. This suggests that the observed oscil-

latory patterns do not encode generic processing of acoustic signal dynamics but

instead capture specific linguistic or musical features. Our experimental paradigm

ensures the selective attention of participants to the speech or melody aspects of
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ecologically valid auditory stimuli (a cappella songs), thereby eliminating confound-

ing effects of signal properties. The involvement of distinct regions in processing

these acoustic environments indicates specialized and domain-specific organization

within the auditory system [Angulo-Perkins and Concha, 2019, Peretz et al., 2015,

Scott and McGettigan, 2013, Xie et al., 2018]. Furthermore, the presence of homol-

ogous areas in the opposite hemisphere, such as the superior temporal gyrus (STG),

motor cortex, and Broca’s area, suggests a bilateral representation and processing of

auditory stimuli. Homologous areas share an evolutionary history and tend to per-

form similar functions, necessitating communication to coordinate their respective

functions [Agcaoglu et al., 2018, Karolis et al., 2019, Wan et al., 2022]. This paral-

lel processing mechanism enables the brain to handle the complementary nature of

speech and music, two most important auditory communication skills. By distribut-

ing the cognitive load, the brain enables simultaneous processing when speech and

melody are presented together, as in the case of ecologically valid a cappella songs

[Angulo-Perkins and Concha, 2019]. The identified target regions of the primary au-

ditory cortices (PACs) in our study during both speech and melody conditions are

consistent with previous literature and widely recognized as auditory-related regions

[Giraud and Poeppel, 2012, Hickok and Poeppel, 2007, Morillon et al., 2010a]. The

regions in the left hemisphere are known for processing various linguistic aspects,

including phonological analysis, syntactic structure, semantic processing, and artic-

ulation. Conversely, the right hemisphere is implicated in processing non-linguistic

aspects of auditory stimuli, such as melodic and tonal structures, pitch varia-

tions, temporal patterns, and rhythmic patterns in melody [Zatorre and Belin, 2001,

Zatorre and Gandour, 2008]. There are reports suggesting the frontal and parietal

regions of the brain, such as the inferior frontal gyrus (IFG) and the intraparietal

sulcus (IPS), are involved in the entrainment of external rhythms. These regions

are thought to play a critical role in the integration of auditory and motor infor-
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mation, and they are activated by the synchronization of movement with a regular

beat[Koelsch, 2011]. It is important to note that these regions are not completely

independent and they can interact with each other in a hierarchical way. The pro-

cessing of different frequency ranges may also be influenced by other factors such as

attention, cognitive states, and task demands. Additionally, frequency-specific later-

alization may also vary among individuals, depending on factors such as handedness,

age, and musical experience. Additionally, the ability of a single region to receive

input at multiple frequencies highlights the brain’s capacity to decode and integrate

distinct aspects of oscillatory activity for coherent representation of auditory per-

cept. This multi-scale hierarchy integrates motor, syntactic, and working memory

information, contributing to the construction of a comprehensive auditory scene.
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Chapter 4

Causal outflow from primary

auditory cortices in dual

time-scales underlie hemispheric

specialization of melody and

speech

4.1 Introduction

In the chapter 2 and 3 we established the role and propagation dynamics from bilat-

eral primary auditory cortices in mediating hemispheric specialization. However,

the nature and mechanistic basis of these oscillatory based information transfer

is yet to be understood. Understanding how this oscillatory information is trans-

mitted to higher-order regions is crucial for comprehensive mapping of the com-

plex dynamics underlying auditory perception and hemispheric specialization. Im-
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portantly, the efficacy of information transfer and coupling mechanisms between

brain regions is naturally contingent upon the underlying structural connectivity,

which provides the structural framework for the precise routing of oscillatory activ-

ity [Avena-Koenigsberger et al., 2017, Sporns, 2011]. Structural connectivity refers

to the physical macroscopic connections between different brain regions, primar-

ily mediated by white matter tracts. There has been substantial evidence on the

role of SC in information transfer between brain regions [Honey et al., 2007], shap-

ing network topology [Bullmore and Sporns, 2009, Cabral et al., 2011], and mediat-

ing synchronization and coherence of neural activity [Stam et al., 2007]. The white

matter strength, which represents the integrity and density of the fiber tracts con-

necting different brain regions, influences the efficiency and magnitude of information

transfer. In addition, the fiber lengths determine the time constants of information

propagation [Cabral et al., 2011]. However, how a static network subserves the dif-

ferent functional requirements of strengths of coupling and temporal delays during

speech and melody remain an open question? The brain accomplishes this by pre-

cisely manipulating the timing and coordination of neural signals through two key

factors: conduction velocities and a scaling factor applied to fiber thickness. Con-

duction velocities, which denote the speed at which neural impulses travel along

nerve fibers, play a pivotal role in governing the temporal aspects of neural com-

munication. Varied conduction velocities facilitate the emergence of distinct time

delays, thereby shaping the arrival and integration of neural information across dis-

parate regions. This temporal coding ensures the precise synchronization neces-

sary for intricate processing tasks. Additionally, the brain utilizes the scaling factor

applied to fiber thickness as a means of regulating synchronization strength. By

modulating these factors, the brain can finely adjust the degree of coordination be-

tween neural signals. Despite the underlying static structural connectivity within

the brain, modulation by conduction velocities and synchronization strength enables
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the generation of functionally relevant diverse range of time delays and strengths

of information propagation. This understanding enhances our comprehension of

the brain‘s intricate adaptability for specific cognitive demands and environmen-

tal stimuli such as speech and melody. Transmission delays in neural communica-

tion among functional brain network nodes has been identified as a key variable

that facilitates the entry and exit to synchronized oscillatory states of the brain

[Ghosh et al., 2008, Petkoski et al., 2018]. While several studies have argued that the

transmission delays are of structural origin specifically introduced via myelin degra-

dation along axons [Ghosh et al., 2008, Petkoski et al., 2018, Pathak et al., 2022],

empirical evidences point out towards the existence of functionally tuned synap-

tic delays [Stange-Marten et al., 2017]. Concurrently, synaptic scaling weights can

be measured from diffusion weighted imaging (dWI) data [Schirner et al., 2015]

and guide the whole-brain synchrony captured by phase coherence in functional

magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) signals

[Cabral et al., 2011, Pathak et al., 2022]. While the weights become a property of

an individual‘s brain structure, task-specific input asymmetries such as speech or

melody can be mapped to the conduction velocities with which communication is

orchestrated among the auditory network nodes.

Here, we hypothesized that hemispheric lateralization of speech and melody emerge

as spatial modes of a collective behavior exhibited by a large-scale auditory network.

Current work takes the help of the fact that bi-hemispheric human auditory process-

ing network exhibit pleiotropy - left hemispheric language processing and right hemi-

spheric melody processing [Albouy et al., 2020], to understand how input asymme-

tries affects intrinsic structural network that facilitates the propagation of neuroelec-

tric signals coordinate dynamically over time. Using empirical EEG recordings ob-

tained in chapter 3 and dynamic modelling of whole brain connectome in the present

work, we establish that lateralized functional processing in brain networks can be

81



Chapter 4. Causal outflow from primary auditory cortices in dual time-scales
underlie hemispheric specialization of melody and speech

captured as spatial modes arising from complex non-linear interactions between input

asymmetries and brain structural properties [Pang et al., 2023, Roberts et al., 2019].

In the present study, we aimed to investigate to investigate the frequency-specific

outflow from the PAC during speech, melody and ASSR conditions. In previous

chapter 3, we employed electroencephalography (EEG) to record neural activity and

reconstruct source activity utilizing subject-specific anatomy of brain and investigate

the laterality in outflow from PAC. In the present study, to find the mechanist basis

of the lateralization, we computed theoretical lateralization indices by integrating

diffusion weighted magnetic resonance imaging (DWI) data from the same partici-

pants, to constrain the outflow from the PAC in a neural dynamic model. The model

used coupled Kuramoto oscillator framework [Kuramoto, 1984] to capture the phase

dynamics of an individual source node [Petkoski et al., 2018, Pathak et al., 2022] and

coupled through connection matrix generated from DWI data [Schirner et al., 2015].

We argue that the transmission delays for the purpose of this study are set at the

gatekeeper node - PAC, based on the input, in a context dependent manner dif-

ferentially for speech vs melody processing and hence can be estimated by model

inversion techniques for task contexts and for different frequency bands - a novel ap-

proach to estimate time-scales of neural control. Further, subject-specific estimates

of these delays allowed comparative analysis between empirical and theoretical LI,

paving the way for individualized predictions required to establish the robustness

of the analysis [Seghier and Price, 2018] (see methods 4.2). The frequency-specific

tuning of such transmission delays was validated by additional ASSR recordings.

Together, understanding the precise participant-specific mechanisms underlying the

transmission and integration of oscillatory activity during speech and melody process-

ing contributes to the comprehensive mapping of the ecologically complex auditory

signals to lateralized brain responses. We demonstrate that parametric modulation

of conduction speeds that effectively control the transmission delays - a key metric
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for understanding information processing and control of any biological network, acts

as the switch for selection of the spatial mode indexing lateralization of speech and

melody. These results provide novel insights into the intricate dynamics of auditory

processing and underscore the significant role of structural connectivity in shaping

frequency-specific neural responses. Understanding the precise mechanisms under-

lying the transmission and integration of oscillatory activity in speech and melody

processing contributes to our comprehensive mapping of the complex dynamics in-

volved in auditory perception.

4.2 Methods

4.2.1 Participants and Experimental procedure

We have recorded diffusion weighted MRI data (DWI) from the same participants

who volunteered in the previous study 3. Informed consent was obtained from all

participants in a format approved by the Institutional Human Ethics Committee

(IHEC) of National Brain Research Centre, in accordance with the guidelines set by

the Declaration of Helsinki

4.2.2 MRI-DWI acquisition and analyses

The T1-weighted structural MRI images were acquired on a Philips Achieva 3.0 T

MRI scanner with the following parameters: TR = 8.4 ms, FOV = 250×230×170,

flip angle = 8◦, 170 sagittal slices, and voxel size of 1×1×1 mm. The preprocessing of

MRI images and volumetric parcellation for individual subjects were performed using

Freesurfer, based on the Desikan- Kilinay atlas (http://surfer.nmr.mgh.harvard.

edu/). Diffusion weighted Imaging data was acquired through a single-shot echo

planar imaging in 3.0 T Philips Achieva Scanner. The DWI sequence was performed
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with TR = 8800 ms, TE = 75 ms, FOV = 210 × 210 × 128 mm, flip angle = 9◦,

matrix size = 104×104, slice thickness = 2 mm, no gap, 64 axial slices, and voxel size

of 2× 2× 2 mm. The diffusion was measured along 32 non-collinear directions using

a b-value of 1000s/mm2, with a b = 0 included as the first volume of the acquisition.

4.2.3 Image processing

The processing of diffusion data and T1 MRI data to construct structural connec-

tome was performed in FSL and ANTS based MRtrix (http://mrtrix.org/), Brain-

Suite (https://brainsuite.org/), and FreeSurfer. Structural connectivity estima-

tion was performed employing the BATMAN pipeline implemented in MRtrix soft-

ware (See method pipleline in Figure 4.1). Particularly, probabilistic tractography

was performed based on the Constrained Spherical Deconvolution (CSD) algorithm

[Tournier et al., 2004, Tournier et al., 2007]. The CSD algorithm evidently outper-

forms the diffusion tensor model (DTI) in regions containing crossing fibers, which

DTI cannot capture due to its ellipsoid approach to fiber orientation estimation. The

initial preprocessing of diffusion-weighted images included denoising to estimate the

spatially varying noise maps [Veraart et al., 2016a, Veraart et al., 2016b], unringing

to remove Gibbs ringing artifacts was performed in MRtrix [Kellner et al., 2016]

and bias field correction of diffusion images [Tustison et al., 2010]. Then MRI im-

ages are preprocessed for co-registration with diffusion data. Therefore, firstly,

skull-stripping of MR images was performed by the Cortical Surface Extrac-

tion Tool [Sandor and Leahy, 1997, Shattuck et al., 2001], followed by correction of

gain variation by the Bias Field Corrector (BFC) software [Shattuck et al., 2001],

part of the BrainSuite. Particularly, it is used to correct image intensity non-

uniformities in magnetic resonance images, which can cause confounding effects

in tissue classification. BFC estimates a correction field based on a series of
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local estimates of the tissue gain variation and corrects for the non-uniformity

field by dividing the original image by the estimated tri-cubic B-spline. There-

after, BrainSuite Diffusion Pipeline (BDP) was used to correct motion and geo-

metric distortions of diffusion images inherent to Echo-Planar Imaging sequences

[Bhushan et al., 2012], co-registration of diffusion and anatomical images, and ob-

taining b-values and b-vectors to be used for further estimation of response functions

[Haldar and Leahy, 2013, Shattuck and Leahy, 2002]. Subsequently, to determine

the diffusion orientation within each voxel, a response function was derived using

Dhollanders algorithm from representative tissue types of the brain i.e., white matter,

gray matter, and cerebrospinal fluid [Dhollander and Connelly, 2016]. Thereafter,

Fiber Orientation Distributions (FOD) were estimated using the CSD algorithm.

Intensity normalization was performed to correct for global intensity differences, and

a whole-brain tractography was generated using probabilistic tractography in tan-

dem with biologically plausible Anatomically Constrained Tractography algorithm to

generate 20 million tracts seeded in gray matter [Smith et al., 2012]. The tractogram

was then coregistered onto individual MRI, and a subset of one hundred thousand

tracts was filtered out to reduce CSD-based inherent bias in overestimation of longer

tracks by Spherical-deconvolution Informed Filtering of Tracts (SIFT) algorithm

[Smith et al., 2013]. Finally, the connectome was parcellated by mapping the tracts

onto MRI data, defined according to the Desikan Kiliany atlas [Desikan et al., 2006]

that was segmented in FreeSurfer (https://surfer.nmr.mgh.harvard.edu/). The

resulting 68 x 68 parcellated whole-brain structural connectivity (SC) weights and

fiber lengths matrices were representative of the number of streamlines and mean

streamline length between each node pair, respectively (See Fig. 4.1). The SC ma-

trix and fiber length matrix were both symmetric matrices and values at the diagonals

of structural connectivity and fiber length matrix representing self-connectivity and

length with self, respectively, were set at zero.
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Figure 4.1: Pipeline to obtain structural connectivity matrices: DWI data
is preprocessed and response function are obtained. At b-value of zero meaning no
diffusion gradient, a sphere denotes isotropic diffusion. At b = 1000 s/mm2 the
response function become flat due to anisotropic water diffusion of whiter matter.
Subsequently, FODs overlaid on each tissue type color coded cerebrospinal fluid is
depicted as red and white matter is shown in blue, zooming in, red signalizes that
the primary orientation is left-to-right, green means posterior-to-anterior (y-axis),
and blue represents orientations in the inferior-to-superior direction (z-axis). Ther-
after, streamlines are generated followed by parcellating the streamlines to obtain
the number of streamlines as fiber weights and mean streamline length as fiber legths
connecting pair of regions.

4.2.4 Network model of neural activity

We aimed to model the propagation of oscillatory activity from primary auditory

cortices to specialized regions of the brain during ASSR, speech and melody process-

ing using a simplified computational model, retaining the essence of key physiological

parameters. The propagation of oscillation can be conceptualized as unidirectional

interactions originating in PAC to form a functional neural network. Such networks

communicate via phase-based synchronization. We employ the Kuramoto model to

simulate these series of synchronizations [Kuramoto, 1984]. Kuramoto model is a

phase-based model mediated by synchronization among coupled oscillators. Hence,

a network of 68 coupled oscillators was simulated, each oscillator representative of a

brain parcel also comprising bilateral primary auditory cortices (PAC). Each other

oscillators had intrinsic noise η, which was randomly drawn from a distribution with

a mean of zero and a standard deviation of one reflecting the natural variability of

oscillatory dynamics in the brain. The remaining two oscillators situated in the pri-

mary auditory cortices and have fixed intrinsic frequencies that correspond to their

oscillatory responses. This framework allowed the unidirectional propagation of en-

tertainment from PAC to the specific nodes and consequent enhancement of spectral

power of those nodes at the frequency of PAC stimulation (Figure 4.2;right panel).
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Figure 4.2: Overview of the methodology: The figure illustrates the pipeline of
study, incorporating both empirical and theoretical analyses. The left panel depicts
the empirical analysis, highlighting the experimental setup and data processing steps
involved in recording neural activity using electroencephalography (EEG) while par-
ticipants selectively attended to speech or melody stimuli. For visualization purpose,
after source localization only ASSR analysis was represented. The right panel repre-
sents the theoretical analysis, showcasing the averaged structural connectivity (SC)
network that was derived from diffusion magnetic resonance imaging (MRI) data.
This network served as a constraint for a neural dynamic model to simulate the
frequency-specific outflow from the primary auditory cortices.

Notably, these functional interactions are not supposed to be instantaneous and are

contingent on the structural connectivity. Hence, we constrained the synchronization

of entrained activity by integrating structural connectivity in the Kuramoto model.

To make the model bio-physiologically realistic, information about structural con-

nectivity was incorporated in the model by having the coupling between oscillators

determined by strength of anatomical connections (fibre thickness in dWI, see sec-

tion “Image processing and structural connectivity). The time scale separation for

processing of “fast speech and “slow melody could be achieved by a propagation

time-delay (τ) in the model such that the current phase θ(t) is dependent on its

interaction with the past phase θ(t − τ). Inadvertently, τ can be conceptualized to

be emerging from a joint contribution of the functional processing in the auditory

network and the constraints posed by myelination, although the former is the only

quantity that can change in a participant and in a session specific way. Thus, the

dynamics of each oscillator θn are governed by the following equation:

θ̇n = k

N∑
p=1

Cnp sin (θp(t− τnp)− θn(t)) + η,

∀n = 1, 2, . . . , (N − 2), p ∈ [1, N ], p 6= n

(4.1)

The coupling strength matrix Cnp was normalized between 0 and 1 such that the
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maximum strength among connections was 1 and k is the global mean coupling

strength used to scale all the coupling strengths; represents transmission delay for

the propagation of information between two nodes, given the length of the fiber.

Thus, τnp = Dnp

v
, where for a bio-physiologically realistic communication speed (v)

is 5−20 ms in the adult primate brain (Ghosh et al., 2008), mean tau (< τ >) ranged

from 3.4 to 17. Thus, Cnp and τnp respectively represent the coupling strength and

time delay between node n and p. Therefore, the dynamics of phase (θ) at any

node will be a function of its anatomical strength and distance with other nodes and

propagation speed (v), which is set by the nature of functional processing. While

equation 4.1 the value of iterates from 1 to 68 including auditory nodes. This implies

that phase dynamics of non-AC will depend on phase dynamics of all other nodes

including bilateral auditory cortices (auditory nodes) are defined as,

θ̇A = ωA (4.2)

where ωA = 2π ∗ fA frequency of AC (fA) nodes.

Participant-wise model fitting

The subject-by-subject laterality indices obtained from the empirical Granger-

causality estimation, were fitted with the LI‘s computed from analyzing synthetic

neural time-series generated by the network model (equations 4.1, 4.2). The sys-

tem of differential equations (equations 4.1, 4.2) was numerically integrated using

the Euler integration method for 250000-time points with a step size (dt) of 0.0001

representative of 25 seconds duration. We took the sine of (θ) obtained at each

node which represents a simulation of neural time series at EEG source level. Sub-

sequently, we calculated the power spectral density from 68 nodes. For each combi-

nation of frequency (f), global coupling (k), and time delay (τ) model simulation,
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simulated lateralization indices were calculated from power spectral density obtained

from each 68 parcels (equation 2.3). We ran an optimization algorithm to obtain a

set (kopt, τopt and fopt), at which the Pearson correlation between simulated and em-

pirical LI reaches a global maximum. Hence, a model inversion was achieved for

the following ranges of each parameter,fopt ∈ [1, 48]; τopt ∈ [3.417] ;kopt ∈ [1, 20].

The frequency window of interest was guided by the observation window of current

study, the range of and has been shown earlier to represent biophysically relevant

[Ghosh et al., 2008, Cabral et al., 2011].

We hypothesize, to process a specific auditory task, phase-based communication in

an oscillatory network can be achieved by adjusting the combination of these free pa-

rameters (kopt, τopt and fopt). While the fitting was constrained by maximizing Pear-

son correlation between empirical LI and model generated LI, frequency-specificity of

these optimal parameters model need to be studied to ensure that the simulated neu-

ral responses align with the observed empirical frequency-specific enhancements in

Granger causality (GC) outflow from the bilateral primary auditory cortices (PAC).

Hence, the model inversion was carried out independently for the major frequency

bands, delta (2− 4Hz), theta (4− 8Hz), alpha (8− 13Hz), beta (13− 30Hz), and

gamma (30 − 48Hz) for speech and music stimuli and also specifically at 40Hz for

ASSR condition. It was required to ensure the frequency specificity of the model i.e.,

the significant distribution fopt across subjects should fall into the corresponding fre-

quency range. For instance, the confidence interval of fopt to predict empirical theta

lateralization should fall into the theta range. Hence, to establish a valid comparison

between empirical EEG frequency and that can establish the frequency selectivity of

the model we also correlated across a range of probable model frequencies (fsimrange)

and estimated the of 95 % confidence bound of resultant predicted fopt. Since, the

outflow from PAC during speech and melody existed in the broadband frequency

range rather than a single frequency unlike the model simulation, making the com-

91



Chapter 4. Causal outflow from primary auditory cortices in dual time-scales
underlie hemispheric specialization of melody and speech

parative assessments between model and empirical results are not straightforward

since the model inversion process can lead to spurious non-unique values of frequen-

cies and other parameters. Hence, 40 Hz ASSR condition where the signal displays

a salient entraining frequency becomes a further validation ground to assess whether

the model can be frequency-selective. Outflow from bilateral PAC was shown earlier

to be present only at 40 Hz [Kumar et al., 2023] during 40Hz ASSRs. Hence, for

the purpose of current study, demonstration of maximum proximity of model gen-

erated LI to empirical LI concomitant with matching of model estimated frequency

and ASSR frequency gives us the confidence about the model estimation process

when a complex range of frequencies are present in signal, e.g., during speech and

music processing. Furthermore, there could be different number of target regions in

each frequency bands across different conditions. Hence, for practical reasons and to

standardize the comparative analysis across conditions, empirical distribution of LI

values across the entire brain volume (34 values) are correlated. Thus, the combi-

nation of kopt, τopt and fopt that yielded maximum correlation with empirical LI was

selected for each subject. Note that the kopt, τopt and are valid only if the fopt lies

within the same range of empirical frequency band.

Furthermore, to confirm the accuracy of the model in utilizing structural connectivity

(SC) to guide predictions, a control condition was implemented. In this condition,

the weights and fiber lengths of the SC matrices for each subject were shuffled and

used for the connectome model simulation. Specifically, the weights and fiber lengths

of the SC matrices were randomly reassigned while maintaining the same number

of connections and nodes. Comparative analyses were then performed between the

shuffled and empirical 40 Hz ASSR condition, focusing on the assessment of the

frequency specificity of the model. In particular, the model‘s ability to accurately

predict the frequency-specific responses, hence at 40 Hz, was examined. The presence

of frequency-specific enhancement (fopt) in the shuffled and unshuffled conditions was
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compared, with particular emphasis on the distribution of frequencies in each con-

dition. By contrasting the shuffled and unshuffled conditions, this assessment aimed

to determine the extent to which the model‘s predictions were reliant on the in-

tact organization of the structural connections in the brain. Notably, the fact that

each task state such as processing speech / melody requires idiosyncratic distribu-

tion of these free parameters given the specific nature of information processing.

Additionally, these neurophysiologically relevant free parameters would not be iden-

tical in every subject owing to the inter-subject variability [Seghier and Price, 2018].

Subject-specific prediction enables not only contribute to the robustness of the anal-

ysis but also enables attributing the functional variability to the differences in indi-

vidual structural connectivity. Nevertheless, another attribute of population studies

is the existence of central tendency in the distribution of free parameter across sub-

jects. Hence, assessing the normality of kopt and τopt across subjects was required

in this framework to evaluate the suitability of assuming a normal distribution for

these parameters. A normal distribution indicates a predictable and stable pattern

of parameter values, which is desirable for interpreting and generalizing the results

of our model. Hence, we assessed the extent of prediction for individual regions

and its inter-subject variability since the empirical source analysis revealed that only

specific regions exhibited frequency-specific enhancement in Granger causality (GC)

outflow from the bilateral PAC. We employed a linear regression analysis, wherein

the empirical LI values of individual regions across subjects were regressed against

the corresponding simulated LI values. The goodness of fit was evaluated by assess-

ing the coefficient of determination (R-squared) and the significance of the regression

coefficients. The LI values of a particular region were selected from the spatial dis-

tribution of LI that yielded maximum correlation fopt, kopt and τopt. Finally, we

examined the global coupling (kopt) and mean delay (τopt) between the speech and

music conditions across all frequencies via paired t-test. This analysis allowed us to
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explore whether the brain exhibited distinct functional mechanisms to process audi-

tory signals of various spatiotemporal complexities, e.g. speech, music and rhythmic

tonal sounds.

4.3 Results

In the empirical study in chapter 3, EEG data were collected from a group of 30

participants during three auditory conditions, melody, speech, and 40 Hz ASSR.

The laterality indices (LI) of frequency-specific Granger causality outflow from bi-

lateral primary auditory cortices were estimated for each task conditions. In the

current theoretical study, we present the computational modelling results, where

bilateral primary auditory cortices were stimulated in-silico, at frequencies ranging

from 1 to 48 Hz. The entrainment propagated throughout the entire brain con-

structed via coupling brain areas (using Desikan-Kiliany parcellation) with strengths

derived from diffusion MRI derived structural connectivity (see Methods, as well as

[Schirner et al., 2015]). Model parameters - a range of realistic conduction velocities

that influences the effective time-scales of processing information (time delays in the

oscillator model,τ), global coupling values (k) among the nodes, were predicted us-

ing from best fits of empirical LIs using model generated LIs. Parameters estimated

from the model inversion were subsequently used for inferring about the underlying

neural mechanisms of functional hemispheric lateralization.

4.3.1 Estimation of transmission delays, synaptic scaling

and neurally mapped input frequencies

We employed the Kuramoto phase oscillator network (Kuramoto, 1984) coupled by

heterogeneous coupling derived from diffusion weighted images to model neural oscil-
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lations observed in the whole-brain connectome (see Methods 4.2 for details). Since

our interest is only in the causal outflow from PAC, the input node was only PAC

for the simulations (see Methods for details, equations 4.1, 4.2). Subsequently, the

steady-state oscillatory responses in each node of this network stems from the inflow

of communication from PAC. Hence, the laterality indices (LI) can be computed

using the power spectral density at each parcel. By maximizing the correlations

between the simulated and empirical LI‘s we can undertake a model inversion to

estimate transmission delays (τopt), global coupling (kopt) and neurally mapped in-

put frequencies (fopt). Subsequently, the following issues were addressed. First, we

take the auditory steady state responses tuned sharply at a specific entraining input

frequency to validate if the network model can predict the LI‘s, tuned at the known

frequency, while, readjusting transmission delays and global coupling (Figure 4.3).

Second, after establishing the validity of the auditory network model, we investigate

the complex multi-frequency EEG response for speech and melody processing and

estimate the transmission delays and global coupling while ensuring frequency se-

lectivity in band specific (delta, theta, beta and gamma) responses and maximizing

the LIs (Figure 4.3). The estimated parameters can then be used to understand

the mechanisms of processing speech and melody by a commonly shared structural

auditory network.

4.3.2 Validation of auditory network model using ASSR

Since, ASSR is a sharp frequency tuned response, the proposed auditory network

model parameters when fitted with a constraining factor of maximizing LI 4.2, should

be able to detect the frequency of tuned neural oscillations around 40 Hz. Using a

realistic parameter search space fopt ∈ [1, 48]; τopt ∈ [3.417] ;kopt ∈ [1, 20]; frequency-

selectivity of the simulated auditory network was estimated by first constructing a

95



Chapter 4. Causal outflow from primary auditory cortices in dual time-scales
underlie hemispheric specialization of melody and speech

null distribution with 95% confidence bounds for fopt. The control null distribu-

tion was created by shuffling the SC matrices, such that each connection weight is

essentially a random rational number between 0 and 1, and using this randomized

SC to generate neural time series that was used to fit the empirical 40 Hz ASSR.

No frequency-specificity was observed from the resultant synthetic data, fopt was

distributed in the whole fsimrange. The maximum correlation ranged between 0.4 to

0.7 across all participants, thus delimiting the correlation value of 0.7 as a thresh-

old correlation that can be generated for randomly connected network (Figure 4.3;

upper right panel). In contrast, when using the unshuffled SC matrices, the em-

pirical 40 Hz ASSR showed frequency specificity, with a 95% confidence interval

of [39.4, 40.9] Hz and maximum correlation values ranging from 0.79 to 0.96 (both

> 0.7), thus, confirming the model‘s ability to predict empirical responses. The

95% confidence intervals for k and τ were [2.5, 3.5] Hz and [1.5, 2.2] Hz respectively.

The distributions of both kopt and τopt followed a normal distribution, assessed using

Lilliefors test with k-stat values of 0.24 (p < 0.001) and 0.16 (p = 0.043) and τ ,

respectively (Figure 4.3; upper right panel).

4.3.3 Mechanisms underlying lateralization of causal out-

flow in beta and gamma frequencies during speech and

melody processing

During speech and melody conditions, no frequency-specificity could be predicted

by the auditory network model in the delta and theta frequency bands (Figure 4.3;

bottom panels). In the delta range, the 95% confidence intervals of fopt for speech and

melody were [17.6, 29.8] Hz and [15.7, 26.9] Hz, respectively, indicating no frequency-

specific prediction. Similarly, in the theta range, the 95% confidence intervals for

speech and melody were [19.2, 30.8] Hz and [16.0, 28.1] Hz, respectively. Therefore,
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the kopt and τopt values for these frequency ranges are not considered reliable.

Figure 4.3: Prediction accuracy of frequency simulation (f (Hz)), global
coupling (k), and global delay (τ): Distributions of prediction accuracy of free
parameters ASSR, ASSR with shuffled SC, speech, and melody conditions. The x-
axis represents the different simulation parameters, while the y-axis represents the
prediction accuracy. The first column in each condition demonstrates the effective-
ness of the frequency simulation in accurately predicting the neural responses. The
last panel shows the correlation coefficients of respective predictions.

On the contrary, frequency-specificity was observed in beta and gamma frequency

bands. For speech, the 95% confidence interval of fopt in beta was [17.2, 23.7] Hz, and

for melody, it was [17.6, 22.8] Hz. In gamma, for speech, the 95% confidence interval

of fopt was [31.0, 41.7] Hz, and for melody, it was [31.1, 37.4] Hz. These CIs indicated

that the model correctly captured the frequency-specificity activity of empirical data

within the beta and gamma bands. The values of kopt and τopt also showed normal

distributions for these frequency bands, indicating a smooth and gradual transition

in the model‘s behavior required for a consistent and reliable model performance.
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The complete list of 95% confidence intervals for frequency, kopt and τopt, as well as

the results of the normality tests, are present in Table 4.1.

Individual-specific prediction of functional lateralization in auditory pro-

cessing networks

To assess the prediction of lateralization, we conducted linear regression analyses

in the beta and gamma frequency ranges to evaluate the extent of prediction for

individual regions found significant in the empirical data. Most regions significantly

predicted lateralization in the empirical data, with the exception of the supramarginal

gyrus during speech condition in the gamma band. Figure 4.4b shows the respective

prediction score for the individual brain region. Overall, the prediction score for

the ASSR condition was greater than the speech and melody condition. When both

the upper and lower confidence intervals of a region‘s laterality index (LI) for both

the simulated and empirical data fell on the same side of zero, we considered the

model to successfully predict the side of lateralization for that region. Consistent

with the empirical conditions, several regions exhibited lateralization. Particularly,

during the ASSR condition, right hemispheric dominance was predicted by the supe-

rior temporal gyrus (STG), parahippocampal cortex, and lateral orbitofrontal cortex

(Figure 4.4a). During speech and melody conditions, the STG predicted left hemi-

spheric dominance during speech and right hemispheric dominance during both beta

and gamma frequencies. The precentral gyrus predicted the side of lateralization

during speech beta and gamma, and in melody during beta frequencies. Addition-

ally, the pars opercularis predicted left hemispheric dominance during speech gamma

conditions.
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Figure 4.4: Lateralization prediction accuracy of individual regions: (A)
Linear Fitting of Empirical and Theoretical LIs, scatter plot shows the linear fitting
of empirical LI (Y-axis) against theoretical LI (X-axis). Each dot represents the
LI of one subject. The analysis focuses on beta and gamma frequencies for speech
and melody conditions, as well as 40 Hz for the ASSR condition. (B) Confidence
Intervals for Lateralization Indices (LI), the confidence intervals for the LI during
empirical (blue) and theoretical (orange) analyses. The shaded background indicates
cases where both empirical and theoretical LIs fall on either side of zero, indicating
accurate prediction of the lateralization direction.

LI prediction from auditory network model follows the auditory process-

ing hierarchy

Interestingly, we observed a systematic decrease in R-squared values for individ-

ual regions along a specific axis of information flow. When arranging the regions

in a specific order, namely superior temporal gyrus (STG), middle temporal gyrus

(MTG), insula, precentral gyrus, Broca‘s area, and supramarginal gyrus, for both

speech and melody conditions, we found that the degree of prediction exhibited a

consistent linear decrease in the gamma frequency band (Figure 4.5 b). This pattern

was observed in both the speech condition [R2 = 0.93, p = 0.001] and the melody

condition [R2 = 0.93, p = 0.001]. Note that, similar analysis in the beta frequency

band was not feasible due to the limited number of regions. However, in the beta

range the highest prediction accuracy was present in STG for speech and PrC for

melody condition.

The paired t-tests showed the presence of overall differences in neural processing

characteristics between speech and melody stimuli Fig. 4.5. The findings revealed

a significant difference in the k parameter [t = 3.05, p = 0.003], indicating distinct

global coupling between the two conditions. Moreover, there was a significant differ-

ence in the tau parameter [t = 11.32, p < 0.0001], suggesting variations in temporal

delays during the processing of speech and melody stimuli. These analyses shed light

on the global neural dynamics and temporal characteristics associated with different

auditory stimuli.
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Figure 4.5: A) Distribution of global coupling and global delay for beta and gamma
frequencies in speech and melody conditions. The distributions are visualized using
kernel smoothing with a bandwidth of 0.3 to enhancing the clarity of the patterns.
B) Decrease in prediction accuracy along the auditory hierarchy in gamma range in
the speech and melody conditions.

4.4 Discussion

The present study introduces a novel approach of modeling the task induced elec-

trophysiological response during speech, melody, and ASSR conditions. Particularly,

with a specific focus on the role of the primary auditory cortices (PAC) and their out-

flow in governing hemispheric specialization. Our study combines empirical analysis

(in chapter 2) and neural modeling to establish a causal link between PAC dynamics

and hemispheric specializations. One notable aspect of current study is the individ-

ualized parametrization structure to function mapping. By integrating individual

diffusion magnetic resonance imaging (DWI) data into our neural model, we ensure

subject-specific variability of the structural constraints underlie the inter-subject

variability of neural dynamics [Seghier and Price, 2018]. Firstly, in the empirical

study, we reconstruct the subject-wise source activity and compute Granger causal-

ity from bilateral PAC in distinct frequency bands. Our findings reveal a common

frequency-specific outflow from PAC in both speech and melody conditions, reach-
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ing to distinct regions reflecting domain-specific organization of the auditory system.

Furthermore, the laterality analysis of causal outflow complies with well-established

hemispheric dominance of left hemisphere for speech, right hemisphere for melody,

and right hemisphere for ASSR, suggesting role of PAC in hemispheric specializa-

tions. To further understand the characteristics of this outflow and lateralization,

we utilize a structurally-guided frequency-specific neural model. We validate the

frequency-specificity of the model and characterize the neurophysiologically relevant

conduction velocity and global coupling characteristics of each auditory condition.

Importantly, we found dichotomy in the temporal scales of information transfer from

bilateral PAC, attributing to the differences in the physical properties of the auditory

signal.

4.4.1 Role of Structural Constraints in Lateralized Network

Dynamics

The physical structure of the brain, including the patterns of connectivity be-

tween brain regions, plays a crucial role in shaping the processing of informa-

tion [Honey et al., 2007, Sporns, 2010]. The structural properties of the brain pro-

vide the foundation for the brain‘s ability to process basic features of the envi-

ronment. However, it is important to note that brain structure is static while

functions are not. While basic features of auditory processing can be explained

solely based on the network properties of structural connectivity, more abstract

and higher-level features of the environment, such as meaning, context, and emo-

tion require a more complex and dynamic interplay between different regions of

the brain [Bauer et al., 2020, Berger et al., 2019, Di and Biswal, 2019]. Our find-

ings revealed that the model incorporating structural connectivity (SC) and os-

cillatory interactions achieved the highest prediction accuracy in the 40 Hz ASSR
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condition. This observation suggests that the neural processes associated with the

ASSR are primarily rooted in the basic stages of cortical processing and do not

necessitate any non-linear or higher-level processing mechanisms. The linear de-

crease in prediction accuracy across hierarchical brain regions further support this

inference. Furthermore, high prediction in motor regions in beta range could be

attributed to the “hard-wiring” of auditory-motor interaction as reported earlier

[Morillon et al., 2010b]. These findings hint that the higher-level processing or other

factors beyond phase-based interactions contribute to propagation of delta and theta

oscillations [Pandey et al., 2022]. On the other hand, the processing of meaning in

language requires the coordination of neural activity between regions involved in

phonetic, lexical, and semantic processing, as well as regions involved in attention,

working memory, and executive control [Kazanina and Tavano, 2023]. Similarly, the

processing of emotion in melody requires the coordination of neural activity be-

tween regions involved in auditory processing, pitch perception, and emotional va-

lence [Gnanateja et al., 2022, Wang et al., 2023, Yurgil et al., 2020]. These distinct

functional requirements are supported by the structural connectivity between these

regions. The brain accomplishes this by precisely manipulating the timing and coor-

dination of neural signals through two key factors: conduction velocities and a scaling

factor applied to fiber thickness. Conduction velocities, which denote the speed at

which neural impulses travel along nerve fibers, play a pivotal role in governing the

temporal aspects of neural communication. Varied conduction velocities facilitate

the emergence of distinct time delays, thereby shaping the arrival and integration

of neural information across disparate regions [Cariani and Baker, 2022]. This tem-

poral coding ensures the precise synchronization necessary for intricate processing

tasks [Ibrahim et al., 2021, Petkoski et al., 2018]. Additionally, the brain utilizes the

scaling factor defined here as global coupling, applied to fiber thickness as a means

of regulating synchronization strength. By modulating this factor, the brain can
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finely adjust the degree of coordination between neural signals. Hence, despite the

underlying static structural connectivity within the brain, modulation by conduction

velocities and synchronization strength enables the generation of a diverse range of

time delays and strengths of information propagation.

4.4.2 Stimuli-dependent shifts in communication delays

Our study revealed distinct temporal scales for auditory processing. The observed

differences in conduction velocities between speech and melody stimuli in our study

align with previous findings that speech exhibits rapid temporal changes and melody

shows fast spectral changes [Zatorre and Belin, 2001]. Our simulation model suggests

that these differences in conduction velocities contribute to the functional lateraliza-

tion observed in speech and melody processing. The faster conduction velocities in

the left hemisphere, specialized for speech, enable the precise analysis of temporal

changes associated with speech processing, while the slower conduction velocities

meaning greater time window allows to capture fine spectral resolution of melody in

the right hemisphere. The role of dichotomous or distinct categories within a system

could be the causes of development of separation of cognitive processes or functional

specialization observed in dichotomies. More over as suggested earlier, brain‘s paral-

lel processing mechanism allows it to effectively handle the complementary aspects of

speech and melody, which are two crucial forms of auditory communication. By dis-

tributing the cognitive load, the brain enables simultaneous processing when speech

and melody are combined, as seen in ecologically valid a cappella songs.

The concept of stimuli-dependent shifts in communication delays for dynamic pro-

cessing correspond to the the adaptability of the human brain. When observing a

distinct distribution of the delays in response to a range of similar stimuli, such as

speech and melody, we uncover evidence of a distinct and separate organization of
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neural processing for these auditory categories. This phenomenon exemplifies cate-

gorical segregation, where the brain selectively assigns stimuli to different processing

categories, and it underlines the capacity for a transition from one state to another,

marking the brain‘s agility in switching from one information-processing mode or

category to another. This dynamic process involves temporal discrimination, allow-

ing for the rapid adjustment of neural communication delays based on the unique

properties of incoming sensory information. It suggests the presence of distinct neu-

ral networks optimized for speech and music processing, where sensory encoding

and feature extraction, as well as neural processing speed, are tailored to efficiently

capture the intricacies of each stimulus type, highlighting the brain’s versatility in

temporal organization and information processing.

In summary, we highlight the dichotomy or dualistic nature of the auditory system

at distinct levels. In the case of acoustic signals, a cappella songs, the auditory

system utilizes two divergent but related (temporal and spectral) cues embedded

in a common signal to dissociate perceptual experiences in the form of speech and

melody, highlighting the dichotomy of auditory system. In our empirical study, we

show the presence of common oscillatory outflow in homologues regions situated in

another hemisphere hints at “spatial” dichotomy. The common oscillatory signa-

tures observed in the brain may represent a common underlying neural process gives

rise to distinct hemispheric dominance. Furthermore, the variations in conduction

velocities result in different temporal processing characteristics, enabling the special-

ized processing of speech and melody in their respective hemispheres. We suggest

the divergent nature of temporal processing arising from same anatomical structure

exhibits “temporal” dichotomy.

106



Chapter 5

Transcranial Alternating Current

Stimulation (tACS) induced neural

oscillations in auditory networks

5.1 Introduction

In continuation of our earlier studies exploring the role of primary auditory cor-

tex (PAC) and its associated neural oscillations in auditory processing and cortical

hemispheric specialization, we now delve deeper into the causal relationship between

PAC dynamics and the cortical asymmetry. Building upon the findings of our pre-

vious work in cahpters 2, 3 and 4 which revealed a frequency-specific outflow from

the PAC contributing to the right hemispheric dominance of auditory steady-state

response (ASSR), the present work aim to disambiguate between thalamo-cortical

and cortico-cortical auditory inputs on corresponding network. While our previous

study provided valuable insights into the frequency-specific outflow from the PAC,

leaving the empirical causal link between PAC dynamics and hemispheric special-

ization unanswered. Importantly, auditory information begins with its initiation in
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lower-level brainstem structures. As this information progresses through the auditory

system, due to the structural pathway crossing, further ascending auditory stimuli

are represented in contralateral pathway (As discussed in chapter 1). Subsequently,

this acoustic information ascends to the primary auditory cortices (PAC), the ini-

tial cerebral cortex processing hub for auditory stimuli. Within the PAC, intricate

functional processing unfolds. The central question here is that whether the informa-

tion about the right hemispheric cortical dominance is already present in ascending

auditory inputs or it is determined by the PAC. This determination may relies on

the PAC‘s functional processing. Therefore, to experimentally and causally answer

this hypothesis, we turn to Transcranial Alternating Current Stimulation (tACS),

an innovative non-invasive brain stimulation technique, as the next step in our re-

search endeavor. The rationale behind employing tACS lies in its unique capability

to modulate neural oscillations in targeted brain regions by applying weak electri-

cal currents through scalp electrodes [Helfrich et al., 2014, Hanslmayr et al., 2019].

By modulating specific oscillatory frequencies in the PAC, by-passing the initial au-

ditory processing in the lower auditory pathway, we aim to causally modulate the

neural dynamics and examine their direct impact on the lateralization. Importantly,

post-tACS stimulation, the auditory information continues its trajectory, reaching

higher cortical regions known for their involvement in advanced auditory tasks, such

as generation of the 40 Hz Auditory Steady-State Response (ASSR). The crux of

this approach lies in observing whether right hemispheric dominance continues to

manifest conspicuously within these higher cortical regions after direct PAC stim-

ulation via tACS. The presence of right cortical dominance would suggest that the

functional processing within the PAC, influenced directly by tACS, plays a deci-

sive role in determining hemispheric specialization, thereby decoupling it from the

structural pathways that originated in the lower brainstem. This approach could be

extended into the study of intricate interplay between PAC oscillations and higher-
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order brain regions involved in language and melody processing (see cahpters 3 and

4). By studying how tACS-induced PAC entrainment influences functional con-

nectivity within auditory networks, we can gain a comprehensive understanding of

the neural interactions that support complex auditory perception. This stimula-

tion technique operates on the principle of frequency-specificity, wherein the applied

alternating current matches the target neural oscillation frequency, effectively “en-

training” or synchronizing the activity of neural populations at that specific fre-

quency [Helfrich et al., 2014, Hanslmayr et al., 2019]. The rhythmic electrical stim-

ulation influences the excitability of underlying neurons, promoting resonance with

the applied frequency and reinforcing the natural oscillatory patterns of the brain.

As a result, tACS can enhance or suppress neural oscillations in a controlled and

temporally precise manner, thereby modulating cognitive functions and perceptual

processes. It can modulate spike timing and information processing by altering firing

rates and spike timing in susceptible networks. The effectiveness of tACS depends

on the interaction of endogenous and exogenous oscillations, with different mecha-

nisms like resonance and imposed patterns playing a role. The results of our tACS

study are anticipated to provide valuable insights into the continuum of our pre-

vious work, substantiating the role of PAC as the seed of cortical processing and

elucidating how specialization begins at this fundamental level. Additionally, by ex-

amining the effects of PAC entrainment on functional connectivity, we aim to shed

light on the network dynamics that underlie auditory perception and contribute to

the distinct perceptual responses to speech and melody. In this study, we present

the design and implementation of our tACS experiment, where participants are ex-

posed to tACS applied to the PAC. We hypothesize that tACS-induced entrainment

of specific oscillatory frequencies will lead to changes in neural activity within the

PAC, consequently involving functional connectivity within auditory networks.

The comprehensive analysis of transcranial alternating current stimulation (tACS)
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electroencephalography (EEG) data is a multifaceted endeavor. It entails optimized

preprocessing steps aimed at refining the data quality, as well as addressing tACS-

induced non-physiological components and artifacts [Noury et al., 2016]. Given the

intricacies involved, it becomes essential to establish a specific experimental setup

and paradigm design that can effectively capture and isolate the relevant neural

responses. In order to ensure the accurate recording and subsequent analysis of

EEG data influenced by tACS, it is imperative to begin with a pilot study. This

preliminary investigation serves the purpose of standardizing both the recording and

analysis protocols. By conducting a pilot study, we could refine the experimental

procedures, and establish a reliable foundation for subsequent data collection and

analysis. In alignment with these considerations, we undertook the recording of a

basic tACS-EEG pilot study. The primary objective of this pilot study was to fine-

tune the methodology, validate the experimental design, and assess the feasibility of

recording EEG data under the influence of tACS. By conducting this initial pilot,

we aimed to streamline the procedures for subsequent investigations, ensuring robust

and accurate data collection and analysis.

5.2 Participants

One, right-handed participant, with a age of 32 years participated in the study after

providing written informed consent. The participant had no history of neurological

or psychiatric disorders and were medication-free at the time of the experiments.

5.3 Experimental Setup and Data Collection

The EEG configuration was consistent with the details outlined in chapter 3. Uti-

lizing a BrainVision Recorder acquisition system, an actiCHamp module equipped
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with 63 active channels was employed, following the standardized International 10-20

electrode placement system. To establish optimal contact between the EEG sensors

and the scalp, SuperVisc electrolyte gel (EASYCAP) was applied. Continuous EEG

data were captured at a sampling rate of 5 kHz, chosen to enhance the correction of

tACS-induced artifacts. The impedance of each sensor was depicted in Figure 5.3.

The reference electrode was positioned at the vertex (Cz), while the ground electrode

was situated on the forehead (AFz).

5.4 Electrical stimulation

Transcranial electrical stimulation was administered using rubber electrodes measur-

ing 5 × 5 cm2 from nurostym, Neuro Device Group, Poland. These electrodes were

affixed to the midline of the scalp, specifically centered over electrode positions Cz

(anode) and T8 (cathode), beneath the EEG cap (Figure 5.3). T8 was identified

as possible electrode to stimulate right primary auditory cortices. The impedance

of the tACS electrodes was maintained below 10 kΩ, by the application of Ten20

conductive paste. A sinusoidally alternating current of 1000 µA, was delivered at

40 Hz, utilizing a battery-driven stimulator. During sham and stimulation condition

the current was ramped up over 10 seconds to 1000 µA, but discontinued during

the sham condition. Participant were unaware about whether he received sham or

stimulation. The sham condition preceded electrical stimulation to avoid carry-over

effects of tACS. The experimental setup involved two blocks of sessions: a sham block

and a tACS block (See Fig. 5.2). Each of these blocks was preceded and followed by

a period of 2 minute of resting state recording. There was a 2-minute gap between

the sham and tACS blocks. The main stimulation period consisted of 20 minutes of

tACS stimulation, which was surrounded by 2 minutes of pre-stimulation recording

and followed by 2 minutes of post-stimulation recording (See Fig. 5.2). Throughout
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these sessions, continuous EEG data was recorded. It was confirmed by the subject

that

Figure 5.1: Paradigm design: Possible experimental conditions to charecterize the
effect of tACS stimulations on auditory networks. The number in red color mark the
number of experimental condition. This inculde only tACS stimulation of AC (left
panel) and with auditory stimuli (Right panel), during binaural, monaural left and
monaural right conditions. During auditory stimuli conditions the tACS stimulation
could also be applied with 90◦ relative phase difference with the auditory stimulation
to investigate the combined efffect of tACS application and auditory stimuli.
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the administered stimulation was tolerable and did not induce visual sensations or

uncomfortable skin perceptions.

Figure 5.2: Experimental design to test the presence of entrainment, a prerequisite
of the main experiment. The first block consisted of sham conditions (blue color)
to prevent carryover effects of tACS. Subsequently, the tACS stimulation after a
break of 2 minutes rest condition. Continous EEG was recorded in both expermintal
conditions
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Figure 5.3: Illustration of the location of tACS electrodes. EEG channels are rep-
resented as circles while their color represent impdences before the EEG recording.
Cathode represented as blue placed below T8 EEG channel to stimulate right audi-
tory cortex. Anode represented as red placed over Cz channel. EEG channels were
placed according to 10-20 locations.

5.5 tACS induced artifact rejection

The EEG data was imported into MATLAB using the built-in function of EEGLAB

and underwent detrending. Across the pre-sham, sham, post-sham, pre-tACS, and

post-tACS intervals, the recorded voltage remained within the range of approxi-

mately ±10 µv. However, during tACS application, the observed voltage ampli-

tude exhibited values in the range of approximately 20,000 microvolts (see Fig.

5.4). This significant increase in voltage amplitude was attributed to substan-

tial artifacts induced by the tACS application at the 40 Hz stimulation frequency
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[Kasten and Herrmann, 2019]. Power spectral density (PSD) analysis revealed a pro-

nounced peak at 40 Hz, along with a broadband rise near this frequency (see Fig.

5.5). Notably, the amplitude of these artifacts exceeded that of physiological oscil-

lations, presenting a challenge as the study was focused on investigating the effects

at 40 Hz.

Figure 5.4: EEG voltage potential magnitude scale during A) Sham and B) tACS
conditions. The figure highlight the presence of tACS induced massive sinusoidal
artifact greater than ideal EEG sinal in several order of magnitude

Addressing these challenges proved complex. A conventional notch filter operating

at the stimulation frequency could not effectively remove the artifact. The wide

bandwidth of the notch filter inadvertently resulted in the removal of essential EEG

information. The complexity of the artifact’s waveform was evident, as illustrated in

Figure 5.5. Moreover, the absolute amplitude of the artifacts across individual elec-

trodes remained uncertain, with variations stemming from factors such as varying
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electrode impedance due to factors like drying, blood circulation, and muscle move-

ments [von Conta et al., 2022, Noury et al., 2016]. These impedance changes influ-

ence the stimulator’s output voltage, altering the current delivered and thereby mod-

ulating the artifact. Furthermore, these non-linear artifacts exhibited non-stationary

characteristics, further complicating their removal and analysis.

Figure 5.5: Power spectral density of each EEG channel during tACS (before artifact
rejection) by blue line, Sham by black line and tACS condition after artifact rejection
by SMA and PCA method represented by magenta line

5.5.1 Superposition of Moving Averages

We employed a method called the Superposition of Moving Averages (SMA), which

draws inspiration from techniques often used in simultaneous EEG-fMRI studies

[Kohli and Casson, 2015]. This concept is depicted in Figure 5.6. To elaborate,

we initially divided the EEG time series (represented as X(i, t)) into distinct non-

overlapping segments. The length of each segment was chosen to match the natural
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cycle of the tACS stimulation frequency. Then, for each segment (y(i, n)), along with

its neighboring segments (a total of M), we performed a central averaging process.

This resulted in what we call a local artifact template (A(i, n)), which was specific to

both the point in time window and the EEG channel. The artifact template derived

through this process encapsulates the typical pattern of the tACS-induced artifact

present in the EEG signal. Following this, we subtracted this artifact template from

the original data (Figure 5.6). Once this subtraction was completed, we reconstructed

the signal by reversing the segmentation process. This final result provided us with

the core EEG data captured during the tACS stimulation period. An interesting

aspect of this technique is its adaptability to different numbers of EEG channels.

Since the artifact template is unique to each EEG channel, the SMA method can

be applied effectively to EEG data collected using varying numbers of channels. By

successfully eliminating artifacts while preserving channel-specific information, the

SMA technique proved to be a valuable asset for analyzing tACS EEG data.

Figure 5.6: Pipeline of Superposition of Moving Averages (SMA) method for tACS-
EEG artifact rejection. Each channel’s data is segmented independently prior to
the calculation of a moving average, which is then subtracted from the initial data
recorded for that channel. Taken from [Kohli and Casson, 2015].
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5.5.2 Principal Component Analysis

To mitigate the impact of residual artifacts on the EEG data, we employed Princi-

pal Component Analysis (PCA) as a corrective approach. PCA is a mathematical

technique used for transforming data into a new coordinate system, enabling the iden-

tification of patterns in the data by capturing its main sources of variance. In our

context, PCA was employed to separate the underlying neural signal from the noisy

artifacts present due to the tACS stimulation. The procedure involved computing

PCA on the EEG data, which effectively identified the linear combinations of EEG

channels that explained the most variance in the data. By identifying and removing

the principal components that corresponded to the tACS-induced artifacts, we were

able to retain the components that represented the neural activity. This approach

is particularly effective when artifacts and neural activity exhibit different spatial

patterns and frequency characteristics. After removing the noisy components, the

EEG data was reconstructed using the remaining principal components. Thereafter,

the reconstructed EEG data was downsampled to a sampling rate of 250 Hz.

5.6 Results

As a result of applying SMA and PCA, we observed a significant reduction in the am-

plitude of voltage fluctuations caused by the tACS artifacts. Specifically, these two

method not only removed the non-physiological 40 Hz frequency but also broad-band

noise associated with it (see Figure 5.5) resulting the voltage fluctuations bounded

within the range of plus-minus 30 microvolts (see Figure 5.7). This reduction in

artifact amplitude allowed the neural signals to become more distinguishable, pro-

viding a clearer representation of the underlying EEG activity. The effectiveness

of this artifact removal process is visually demonstrated in the figures 5.7 and 5.5,

where the preserved fluctuations at other frequencies were retained while the tACS-
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induced artifact was significantly reduced. In summary, the combination of SMA and

PCA proved to be a powerful technique for effectively separating gross tACS-induced

artifacts from the neural EEG signal.

Figure 5.7: EEG voltage potential magnitude scale during tACS condition after
artifact rejection.

5.6.1 Topography of tACS induced 40 Hz spectral power

The topographical plot of the 40 Hz power relative to the sham condition showed a

distinct increase in the power of the 40 Hz frequency band over the right hemisphere

(see Figure 5.8). The difference in global channel average of 40 Hz spectral power

during tACS and sham condition was significantly high with pval < 0.01 as assessed

by random permutation testing (See 2.2.5 for more details). This observation indi-

cates that the tACS stimulation at 40 Hz successfully influenced neural activity in

the targeted areas. This result underscores the potential effectiveness of tACS in

enhancing the spectral power of neural oscillations in a frequency-specific manner.
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The distinct topographical distribution further highlights the spatial specificity of

the tACS effect, reinforcing its capability to target particular brain regions.

Figure 5.8: Topography of the 40 Hz power during tACS relative to the sham con-
dition.

5.6.2 Presence of entrainment

The subsequent requirement is the assessment of the phase-locking of the 40 Hz

steady-state response. This evaluation is essential as the observed increase in 40 Hz

power could potentially arise from both phase-locked and non-phase-locked compo-

nents. The degree of entrainment reflects the ability of tACS to synchronize with and

entrain endogenous oscillations in the brain. To conduct this analysis, we epoched
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the continuous EEG data into 1-second segments. This segmentation allowed us to

estimate the degree of phase alignment through the measurement of the Inter-Trial

Phase Coherence (ITPC). The analysis revealed that the ITPC was maximized pre-

cisely at the 40 Hz frequency, exhibiting a sharp and narrow peak (see Figure 5.9).

This finding suggests a robust phase-locking of the neural oscillations to the 40 Hz

tACS stimulation. The high ITPC value signifies that the neural activity during

the tACS stimulation at 40 Hz is consistently aligned in phase across different tri-

als. This phase-locking phenomenon implies synchronization between the external

tACS input and the ongoing endogenous oscillations in the targeted brain region.

The occurrence of this narrow and pronounced peak in the ITPC spectrum at 40

Hz provides compelling evidence for the successful entrainment of neural oscillations

by the tACS stimulation. This synchronization underscores the capacity of tACS to

modulate and influence neural activity in a frequency-specific manner.

Figure 5.9: Phase-locking across frequency range during tACS stimulation for a
arbitrary channel.
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However, the ITPC value obtained during the empirical recording of Auditory

Steady-State Responses (ASSR) using Amplitude Modulated (AM) stimuli was con-

sistently around 0.5 (See Fig. 2.1) and ITPC value during the tACS stimulation

measured at 0.21 (see Figure 5.9). The lower ITPC value at 40 Hz may potentially

stem from various factors. One plausible explanation is the existence of distinct

internal clocks between the tACS stimulator and the EEG recording system. This

temporal misalignment could result in variations in the phase relationship between

the tACS application and the EEG data recording, ultimately influencing the cal-

culated ITPC value. Moreover, subtle alterations in electrode impedances over time

might contribute to changes in the phase of tACS application across different seg-

ments of EEG data. Consequently, the entrained oscillation’s phase, when divided

into equally segmented data, could be different across trials due to varying tACS

application phases at different time points. These inconsistencies in phase align-

ment across segments may be contributing to the lower ITPC value observed. To

address these challenges and attain a more accurate measure of entrainment, it is

imperative to explore a method that directly assesses the phase-locking between the

administered tACS wave and the recorded EEG signal. This approach would offer

a quantifiable metric to precisely evaluate the degree of entrainment. By establish-

ing a direct phase comparison, the impact of potential temporal misalignments and

electrode impedance fluctuations on the calculated ITPC value could be mitigated.

5.7 Discussion

The application of transcranial Alternating Current Stimulation (tACS) represents

a promising non-invasive technique for modulating endogenous neural oscillations

[Hanslmayr et al., 2019, Lakatos et al., 2019]. Sinusoidal currents employed by tACS

have the potential to temporally align neural firing patterns and elicit entrainment of
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oscillatory activity. Previous studies have demonstrated behavioral effects of tACS,

yet the simultaneous investigation of neural activity through EEG poses challenges

due to the presence of tACS-induced artifacts. Many studies have been confined to

exploring EEG changes before and after stimulation due to the pervasive presence

of stimulation artifacts in the EEG data. In this study, we have recorded EEG data

during application of 40 Hz sinusoidal current over right auditory cortex. As a preq-

uisite for our main experiment (see 5.1), we showcased how tACS-induced artifacts

can be effectively addressed with appropriate methodologies. One key challenge is

the tACS-EEG artifact, a quasi-sinusoidal signal with its primary harmonic matching

the stimulation frequency and being several orders of magnitude greater than the sig-

nal of interest. While common mode rejection by the EEG amplifier can eliminate

artifacts that are consistent across all channels (like line noise), our findings indi-

cate the contrary. Furthermore, the existence of non-linear artifacts, which deviate

from pure sinusoids [Kasten and Herrmann, 2019], further complicates the situation.

Fluctuations in electrode impedance due to factors such as electrode drying, blood

circulation, and muscle movements lead to changes in the stimulator’s output, effec-

tively modulating the artifact itself [Noury et al., 2016]. Additionally, non-stationary

artifacts arising from respiration and heartbeats contribute to the complexity of ar-

tifact removal. Addressing these artifact challenges, we demonstrated that EEG

signals during tACS can be successfully recovered, thereby eliminating large-scale

stimulation artifacts. The utilization of methods like Superposition of Moving Av-

erages (SMA) and Principal Component Analysis (PCA) has enabled the extraction

of “clean” EEG data. The preliminary result from the preprocessed data showed

tACS-induced spectral power and phase-locking specifically at 40 Hz. Furthermore,

the topographical distribution of 40 Hz spectral power are distributed over right

channels. In conclusion, our study demonstrates the viability of effectively mitigat-

ing tACS-induced artifacts, paving the way for to observe frequency-specific synchro-

123



Chapter 5. Transcranial Alternating Current Stimulation (tACS) induced neural
oscillations in auditory networks

nization of neural activity of the primary auditory cortex. This was a preliminary

study as sanity check to further study the effect of frequency-specific stimulation of

primary auditory cortices and its propagation dynamics in functional hemispheric

specialization.

5.8 Future directions

To further refine the tACS paradigm, several requisites are worth noting. Firstly,

addressing the variability in tACS phase could be achieved by measuring tACS cur-

rent simultaneously via an oscilloscope. Recording the tACS-generated sine wave

provides essential reference information, aiding in the quantification of phase en-

trainment (see section 5.6.2). Secondly, obtaining an MRI scan of participants could

facilitate electrode placement based on a simulated current density distribution in

a realistic finite-element head model, optimizing current flow targeting the primary

auditory cortices. Thirdly, to enhance temporal alignment between EEG and tACS,

multiple triggers in the EEG should be employed, rather than a singular one, maxi-

mizing temporal alighnement of tACS-generated sine wave and EEG epochs.
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Conclusion and Summary

At the heart of human perception lies the extraordinary ability to hear, a cornerstone

of our sensory experience. Audition commences with the intricate mechanisms of the

ear, where sound waves are transduced into neural impulses by the cochlea, an organ

orchestrating the initial stages of auditory processing. The auditory pathway carries

these impulses through successive processing centres reaching upto the cerebral cor-

tex for specialized and higher-order processing [Hackett, 2011]. This hierarchy is crit-

ical for transforming auditory inputs into meaningful perceptions, involves distinct

processing stages. At the brainstem, the ascending pathway crosses over, leading to

contralateral dominance up to the primary auditory cortices (PAC). These cortices

serves as the foundation of cortical processing being the first cortical structures to

receive ascending auditory inputs. At the cortical level, there are substantial stud-

ies on the functional organisation of auditory processing. The auditory landscape,

characterized by speech and music, represents the two most essential modes of audi-

tory communication. One of the widely known attribute of speech and music is their

dichotomy and manifestion of the hemispheric specialization. For instance, left hemi-

sphere is known to process speech and language while right hemisphere is dominant

during tonal, rhythm and music processing [Zatorre, 2022]. However, prior studies
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utilizing neuroimaging techniques have often investigated lateralization in isolation,

lacking a comprehensive contextual understanding within the broader hierarchical

processing architecture. Particularly, the neural underpinnings and the mechanis-

tic basis of these observed lateralization given the underlying structural pathways

remain unanswered.

The study of neural oscillations serves as a crucial approach to understanding au-

ditory processing, given the temporal nature of sound. Neural oscillations synchro-

nize with the temporal patterns of auditory stimuli, forming the basis of auditory

perception [Ding et al., 2015]. These oscillations encode various sound attributes,

such as pitch, timbre, and rhythm, and their synchronization enables the brain to

decode complex auditory information. Oscillations in distinct frequency band are

organised at specific processing stages in the brain integrating motor, syntactic,

working memory information, constructing a coherent representation of the auditory

scene [Kösem and van Wassenhove, 2017b]. The coherence of these oscillations fa-

cilitates inter-regional communication emerging as a large-scale functional network

[Fries, 2005]. These networks and their dynamics is known to be the fundamental

of cognitive functions. Characterization of these functional networks would shed

light on the neural underpinnings and mechanistic basis of functional organisation

of auditory processing in addition to their asymmetry.

Importantly, the behaviour of these network is naturally contingent upon the un-

derlying structural connectivity (SC), which provides the structural framework for

the precise routing of oscillatory activity [Honey et al., 2007]. There has been sub-

stantial evidence on the role of SC in information transfer between brain regions

[Honey et al., 2007], shaping network topology [Bullmore and Sporns, 2009], and

mediating synchronization and coherence of neural activity [Stam et al., 2007]. The

white matter strength, which represents the integrity and density of the fiber tracts

connecting different brain regions, influences the efficiency and magnitude of in-
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formation transfer. In addition, the fiber lengths determine the time constants of

information propagation. However, how does a static network subserve the different

functional requirements of strengths of coupling and temporal delays during speech

and music ? The brain accomplishes this by precisely manipulating the timing and

coordination of neural signals through two key factors: conduction velocities and a

scaling factor applied to fiber thickness [Cabral et al., 2011]. Conduction velocities,

which denote the speed at which neural impulses travel along nerve fibers, play a

pivotal role in governing the temporal aspects of neural communication. Varied con-

duction velocities facilitate the emergence of distinct time delays, thereby shaping

the arrival and integration of neural information across disparate regions. This tem-

poral coding ensures the precise synchronization necessary for intricate processing

tasks. Additionally, the brain utilizes the scaling factor applied to fiber thickness

as a means of regulating synchronization strength. By modulating this factor, the

brain can finely adjust the degree of coordination between neural signals. Despite the

underlying static structural connectivity within the brain, modulation by conduction

velocities and synchronization strength enables the generation of a diverse range of

time delays and strengths of information propagation. This understanding enhances

our comprehension of the brain’s intricate adaptability for specific cognitive demands

and environmental stimuli such as speech and music.

Our first study identifies 40 Hz auditory steady-state response (ASSRs) as robust

marker to investigate directed networks of tonal processing. We record continuous

EEG data from 20 human participants in addition to their individual T1 MRI. Dur-

ing the EEG sessions the participants were presented with 1000 Hz sinusoidal tone

amplitude modulated at 40 Hz. There were three auditory conditions 1) Binaural,

2) Monaural left and 3) monaural right condition in addition to resting state EEG

recording sessions. We first seek to establish contralateral dominance at the primary

auditory cortex level followed by mechanism of well known right hemispheric dom-
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inance of 40 Hz ASSRs. We employ power spectrum, source localization, network

analysis with global coherence and Granger causality to study functional organization

of the brain during processing of 40 Hz ASSRs. We observed stimuli-specific sharp

enhancement in phase-locking and spectral power at 40 Hz. Laterality analysis con-

firms contralateral dominance at the primary-auditory cortex level during monaural

conditions and overall right hemispheric dominance. The rise in the Global coherence

confirms the presence of underlying large-scale functional network at 40 Hz. Further,

the directionality analysis among relevant source regions shows presence of a hierar-

chical information flow. Particularly, During every stimulation condition, there were

causal flows originating from both primary auditory cortices reaching to the right

superior temporal gyrus (STG), consequently requiring condition-specific interhemi-

spheric causal flow from the left PAC. Finally, we identify bidirectional communica-

tion between right STG and right Broca‘s areas as contributor of right-hemispheric

dominance manifested as right hemispheric dominance during tonal processing.

In second study, we aimed to investigate to investigate the frequency-specific out-

flow from the PAC during speech, melody and ASSR conditions. We employed

electroencephalography (EEG) to record neural activity while 30 participants selec-

tively attended to either the speech or melodic content of ecologically valid a cappella

songs. We reconstruct source activity utilizing subject-specific anatomy of brain and

investigate the laterality in the causal outflow from PAC. The findings reveal a com-

mon frequency-specific outflow from PAC in both speech and melody conditions,

reaching to distinct regions reflecting domain-specific organization of the auditory

system. Furthermore, the laterality analysis of causal outflow complies with well-

established hemispheric dominance of left hemisphere for speech, right hemisphere

for melody, and right hemisphere for ASSR, suggesting role of PAC in hemispheric

specializations. This suggests that the observed oscillatory patterns do not encode

generic processing of acoustic signal dynamics but instead capture specific linguistic
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or musical features. The involvement of distinct regions in processing these acous-

tic environments indicates specialized and domain-specific organization within the

auditory system (Peretz et al., 2015).

In the chapter 4, we explore the mechanistic basis of the hemispheric specialization

observed in the chapter 2 and 3. We compute theoretical lateralization indices by

integrating diffusion magnetic resonance imaging (dMRI) data from the same par-

ticipants recorded in chapter 3, to constrain the outflow from the PAC in a neuro-

dynamic whole-brain connectome model. We performed the subject-specific com-

parative analysis between empirical and theoretical lateralization indices, paving the

way for individualized predictions required to establish the robustness of the anal-

ysis. Here, we hypothesized that hemispheric lateralization of speech and melody

emerge as spatial modes of a collective behaviour exhibited by a large-scale auditory

network. Firstly, we validate the frequency-specificity of the neural dynamic model

in the comparative analysis with a highly frequency-specific response i.e., ASSR.

Our findings revealed that the observed frequency-specific outflow in the brain can

be conceptualized as time-delayed phase interactions occurring within the structural

connectome. We demonstrate that parametric modulation of conduction speeds that

effectively control the transmission delays - a key metric for understanding informa-

tion processing and control of any biological network, acts as the switch for selection

of the spatial mode indexing lateralization of speech and melody. These results pro-

vide novel insights into the intricate dynamics of auditory processing and underscore

the significant role of structural connectivity in shaping frequency-specific neural

responses.

Building upon the findings of our previous studies and to disambiguate between

thalamo-cortical and cortico-cortical auditory inputs on corresponding network we

undertook a Transcranial Alternating Current Stimulation (tACS) study. By stim-

ulating PAC by tACS we aim to causally modulate large-scale network and exam-
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ine how these propagation leads to hemispheric lateralization. In a pilot study, we

record EEG while 40 Hz sinusoidal alternating current is applied to a participant’s

right PAC. The utilization of methods like Superposition of Moving Averages (SMA)

and Principal Component Analysis (PCA) has enabled the extraction of “clean” EEG

data. The preliminary result from the preprocessed data showed tACS-induced spec-

tral power and phase - locking specifically at 40 Hz. Furthermore, the topographical

distribution of 40 Hz spectral power are distributed over right channels. This was

a preliminary study as sanity check to further study the effect of frequency-specific

stimulation of primary auditory cortices and its propagation dynamics in functional

hemispheric specialization. The aim of this pilot to standardise recording and anal-

ysis pipeline to remove tACS induced massive artifacts in EEG.
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Thomalla, G., Gerloff, C., and König, P. (2016). Modeling of Large-Scale Func-

tional Brain Networks Based on Structural Connectivity from DTI: Comparison

with EEG Derived Phase Coupling Networks and Evaluation of Alternative Meth-

ods along the Modeling Path. PLoS Computational Biology, 12(8):e1005025.

[Fonseca et al., 2015] Fonseca, L. C., Tedrus, G. M. a. S., Rezende, A. L. R. a., and

Giordano, H. F. (2015). Coherence of brain electrical activity: a quality of life

indicator in Alzheimer’s disease? Arquivos de neuro-psiquiatria, 73(5):396–401.

137



BIBLIOGRAPHY

[Fries, 2005] Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal com-

munication through neuronal coherence. Trends in Cognitive Sciences, 9(10):474–

480.

[Friston, 2011] Friston, K. J. (2011). Functional and Effective Connectivity: A Re-

view. Brain Connectivity, 1(1):13–36.

[Fuchs et al., 2001] Fuchs, M., Wagner, M., and Kastner, J. (2001). Boundary ele-

ment method volume conductor models for EEG source reconstruction. Clinical

Neurophysiology, 112(8):1400–1407.

[Fujioka et al., 2015] Fujioka, T., Ross, B., and Trainor, L. J. (2015). Beta-band

oscillations represent auditory beat and its metrical hierarchy in perception and

imagery. Journal of Neuroscience, 35(45):15187–15198.

[Galambos et al., 1981] Galambos, R., Makeig, S., and Talmachoff, P. (1981). A 40-

Hz auditory potential recorded from the human scalp. Proceedings of the National

Academy of Sciences of the United States of America, 78(4):2643–2647.

[Geweke, 1982] Geweke, J. (1982). Measurement of linear dependence and feedback

between multiple time series. Journal of the American Statistical Association,

77(378):304–313.

[Ghosh et al., 2008] Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R., and Jirsa,

V. K. (2008). Noise during Rest Enables the Exploration of the Brain’s Dynamic

Repertoire. PLoS Computational Biology, 4(10):e1000196.

[Giraud and Poeppel, 2012] Giraud, A. L. and Poeppel, D. (2012). Cortical oscilla-

tions and speech processing: Emerging computational principles and operations.

138



BIBLIOGRAPHY

[Gnanateja et al., 2022] Gnanateja, G. N., Devaraju, D. S., Heyne, M., Quique,

Y. M., Sitek, K. R., Tardif, M. C., Tessmer, R., and Dial, H. R. (2022). On the

Role of Neural Oscillations Across Timescales in Speech and Music Processing.

[Gotts et al., 2013] Gotts, S. J., Jo, H. J., Wallace, G. L., Saad, Z. S., Cox, R. W.,

and Martin, A. (2013). Two distinct forms of functional lateralization in the human

brain. Proceedings of the National Academy of Sciences of the United States of

America, 110(36):E3435–E3444.

[Gourévitch et al., 2020] Gourévitch, B., Martin, C., Postal, O., and Eggermont,

J. J. (2020). Oscillations in the auditory system and their possible role.

[Gramfort et al., 2010] Gramfort, A., Papadopoulo, T., Olivi, E., and Clerc, M.

(2010). OpenMEEG: Opensource software for quasistatic bioelectromagnetics.

BioMedical Engineering Online, 9(1):1–20.

[Granger, 1969] Granger, C. W. J. (1969). Investigating Causal Relations by Econo-

metric Models and Cross-spectral Methods. Econometrica, 37(3):424.

[Griffiths et al., 2000] Griffiths, T. D., Penhune, V., Peretz, I., Dean, J. L., Patter-

son, R. D., and Green, G. G. (2000). Frontal processing and auditory perception.

NeuroReport, 11(5):919–922.
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[Kösem and van Wassenhove, 2017c] Kösem, A. and van Wassenhove, V. (2017c).

Distinct contributions of low- and high-frequency neural oscillations to speech

comprehension. Language, Cognition and Neuroscience, 32(5):536–544.

[Kumar et al., 2016] Kumar, G. V., Halder, T., Jaiswal, A. K., Mukherjee, A., Roy,

D., and Banerjee, A. (2016). Large scale functional brain networks underlying

temporal integration of audio-visual speech perception: An eeg study. Frontiers

in Psychology, 7(OCT):1558.

[Kumar et al., 2023] Kumar, N., Jaiswal, A., Roy, D., and Banerjee, A. (2023). Ef-

fective networks mediate right hemispheric dominance of human 40 Hz auditory

steady-state response. Neuropsychologia, 184:108559.

[Kuramoto, 1984] Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbu-

lence, volume 19 of Springer Series in Synergetics. Springer Berlin Heidelberg,

Berlin, Heidelberg.

143



BIBLIOGRAPHY

[Lakatos et al., 2019] Lakatos, P., Gross, J., and Thut, G. (2019). A New Unifying

Account of the Roles of Neuronal Entrainment. Current Biology, 29(18):R890–

R905.

[Langers et al., 2005] Langers, D. R., Van Dijk, P., and Backes, W. H. (2005). Later-

alization, connectivity and plasticity in the human central auditory system. Neu-

roImage, 28(2):490–499.

[Lee, 2013] Lee, C. C. (2013). Thalamic and cortical pathways supporting auditory

processing. Brain and Language, 126(1):22–28.

[Lithari et al., 2016] Lithari, C., Sánchez-Garciá, C., Ruhnau, P., and Weisz, N.
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Life is a symphony of rhythms, and the dance of biology is a testament

to the exquisite symmetries that exist within nature’s grand design.
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