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Abstract

Author: Neeraj kumar

Title: Large-scale brain networks get entrained during

processing of periodic auditory stimuli

Institution: National Brain Reserach Centre

Dissertation Advisor: Dr. Arpan Banerjee

Degree: Masters in Neuroscience

Year: 2017

In the real world we are bombarded with a range of acoustic stimuli having a number

of frequencies. Several electroencephalogram (EEG) studies have shown that stimulation

by periodic auditory stimuli evokes a steady state response at the corresponding frequency,

with 40Hz eliciting maximum response. Despite having enormous potential for clinical

applications from measuring hearing threshold to characterizing the alteration of diseased

state in Alzheimer’s, the underlying network mechanisms are poorly understood. Present

study exploits this paradigm to characterize the network mechanisms underlying binaural

and monaural auditory stimulation.

Subjects were presented with binaural and monaural stimuli. Pure tones at 1kHz fre-

quency were presented at 40 cycles a second during the periodic stimulation period. I

observed the enhancement of spectral power at individual participant and group level at 40

Hz in distributed scalp sensor locations. Maximum 40 Hz spectral power found in mastoid

sensors and frontal central areas. Subsequently, I computed global coherence, an average

of all of the pairwise coherences, to identify the presence of a large-scale brain network.

Task-specific enhancement of global coherence specifically at 40 Hz indicates the entrain-

ment of a large-scale neuronal network in monaural and binaural conditions. Hemispheric

analysis revealed the ipsilateral dominance in the processing of monaural stimuli. Subse-

quently, measurement of pairwise imaginary coherence to detect sub-networks were carried

out. Statistical testing of interaction among channel pairs was done using non-parametric

tests. Bilateral long range interactions involving centro-frontal and temporal sensors and

parietooccipital sensors were significant. These interactions were ipsilateral dominant in

monaural conditions. To identify the causal influence in all significantly interacting channel
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pair I employed Granger causality (GC) analysis. In both monaural and binaural condi-

tions, GC revealed the influence of right temporal region to the frontal areas. Furthermore,

in binaural and monaural left condition GC indicates the unidirectional influence of frontal

regions to left mastoid region.

In conclusion, I establish the presence of large-scale effective networks encompassing bilat-

eral auditory and frontal areas that get entrained during the processing of 40 Hz auditory

stimuli.
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Chapter 1

Introduction

“There are billions of neurons in our brains, but what are neurons? Just cells. The brain

has no knowledge untill connections are made between neurons. All that we know, all that

we are, comes from the way our neurons are connected.” - Tim Berners-Lee

Perception of the external world requires the processing of information incoming from

the sense organs. The brain accomplishes this information processing primarily through

detection, interpretation and action selection. However, majority of the incoming informa-

tion in our daily lives encompasses a spectrum of features (such as alignment, periodicity,

spatial frequency etc). Therefore, the brain performs the complex task of analyzing and

uniting these features which enables us to gain a unified percept. Research directed towards

understanding the mechanism of information processing primarily believe in localization-

ism or modular models [2, 3, 4]. Wherein they hypothesize in mapping specific brain areas

to specific functions [5]. Nevertheless, higher order cognitive functions like speech per-

ception, memory encoding, consciousness etc. require the involvement of multiple brain

areas. Therefore, their mechanisms need to be explained under the framework of functional

integration rather than segregation.

The functional integration concept hypothesize that coordinated activity of distributed

neuronal assemblies underlie cognition. Such co-activated neuronal assemblies in response to

any cognitive task form a network which are called the neuro-cognitive networks

[6]. The spatio-temporal dynamics of these networks can be characterized from the pattern

3



of their electromagnetic and metabolic activity. In the current report, we explore the vari-

ous measures by which we can compute the dynamics of the neuro-cognitive networks that

entails any cognitive function.

1.1 Brain networks

Whenever brain is subjected to perform a certain task, areas involved in comprehending that

activity are co-activated [7]. All the neuronal elements that are linked together to achieve a

common goal are referred to as a brain network. A neuronal element can be represented

as a neuron, a neuronal ensemble or a brain region. Coalitions of a set of neuronal elements

during an exogenous or endogenous task, mark the emergence of a network. Dynamics

of thus emerged network vary depending upon the information processing in the brain.

Acquired information can be processed either temporally or spatially or by the interplay of

both[8]. Two modes of neuronal connectivity are 1. Anatomical networks and 2. Functional

networks.

1.1.1 Anatomical networks

By definition, anatomical networks are the ones that are based on the physical or structural

links between different regions of the brain [9]. These links are created by connecting

various neuronal hubs by synapse or axonal pathways. Axonal pathways have directionality

associated with them due to polar nature of neurons. Synaptic plasticity is an important

measurable parameter in anatomical connectivity which at a microscopic level is defined as

change in synaptic strength over time [10]. In vitro tracing methods and in vivo diffusion

tensor imaging (DTI) are one of the few popular techniques used for studying anatomical

networks. Depending upon the plasticity of the brain and stimulus provided, changes in

anatomical networks may take from minutes to years [11]. Structural plasticity occurs

during making new experiences and learning processes [12, 13, 14]. .

1.1.2 Functional network

Functional connectivity is defined as the temporal dependency of neuronal activation pat-

terns of anatomically separated brain regions [15, 16]. A functional network consists of
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unique sets of transient interactions between neuronal elements (from individual neuronal

to interactions in specialized brain areas). Temporal dynamics of a functional network

change in the range of milliseconds [17, 18]. Furthermore, dynamics of functional networks

are subject to vary with age [19]. This is a consequence of a change in the anatomical archi-

tecture across an individual’s lifespan as described in the previous section. The Neuronal

connection that consists long ranges interactions between functionally diverse brain areas

are called large scale network. A well coordinated cognitive function is a consequence of

large-scale functional networks. A functional network is thus detected by its role in the

induction of a cognitive state.

1.2 Importance of brain networks

Once stimulated by some extrinsic or intrinsic stimuli corresponding brain network will

activate. There are substantial evidence that suggests that large-scale brain networks are

involved in each stage of neural information processing [20, 21, 22, 23, 24, 18, 25, 26].

Principle feature of a network is to provide a coordinated framework for the functional

integration of information processing in distributed neuronal ensembles during higher or-

der cognitive functions [27, 15]. Functional integration is crucial for multiple brains areas

to simultaneously participate in information processing by modulating their interactions

accordingly. Subsequently, they perform principal actions that include controlling other

cortical or subcortical structures [28, 29], modulating the behavior of respective effector

organs. Aforementioned actions can be performed by the whole network or can be divided

into component regions. These networks also coordinate with networks of other modal-

ity to have an integrate. “Network hub”, neuronal elements that have a high degree of

connectivity (high participation coefficient) to the network of other modality, mediate the

process of integration of information from distributed brain areas. Networks synchronization

has been implicated to play a crucial role in perception, memory, and even consciousness

[30, 31, 32, 33, 34]. In the absence of any task, brain attain resting state. The state

of resting is also maintained by an explicit network termed as resting state network [35].

Out of many networks, default mode network(DMN) is most studied resting brain net-

work. DMN which plays an important role in monitoring the internal mental landscape

5



[26]. Another popular network called salience network (SN), have a crucial role in main-

taining attentional mechanisms to the most biologically and cognitively relevant events

[36]. Dynamic interactions between brain areas provide a framework in a shift of attention

[37]. For successful segregation and integration of information between specialized brain

regions, an effective mechanism should be there. A network provides an architecture to

accomplishing this. “Connector hub”, neuronal structures that have very high degree of

participation coefficient in a network have a role in intermodular communication. Thus

provide a basis to understand the segregation and integration of information in the brain.

A careful examination of the organization of functional networks results in similarities to

small-world attributes [21]. This proves information transfer to other regions is not only

fast but metabolically and economically efficient. Hence, a network provide an structural

and functional architecture on which information flow or integrative processes occurs.

1.3 Tools for the extraction of brain networks

To understanding task specific dynamics of brain require the characterization of network

mechanisms at varying spatiotemporal scales from neuroimaging data recorded at high

temporal resolution. Recent neuroimaging techniques has catalyzed the evolution of func-

tional connectivity measures that have potential to evaluate the spatiotemporal dynamics

of neurocognitive networks. There are various established measures to asses functional con-

nectivity from the empirical data. Major steps to estimate brain network from empirical

data are summarized in figure 1.1. In the current, section we provide an overview of some

measures used to estimate a network from empirical data.

1.3.1 Mapping of functional motifs

A functional network emerges from the dynamic interactions between specialized anatomi-

cal regions of the brain [38]. Hence to extract a particular network, underlying functional

sources should be identified. A source corresponds to a brain region of enhanced activ-

ity in response to an endogenous or exogenous task. They act as functional units during

information processing in the brain [39]. Hence, these sources must have an individual

function during a cognitive task in addition to coactivation with other sources. Evaluating
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the sources underlie any cognitive task using empirical data are highly dependent based on

different assumptions about the underlying measure and the modality of the neuroimaging

technique that was used.

The increased activity of sources can be identified using noninvasive neuroimaging tech-

niques including, enhanced glucose metabolism in positron emission tomography (PET),

enhanced blood flow in functional magnetic resonance imaging (fMRI), recordings or syn-

chronized oscillatory activity in electroencephalography (EEG) and magnetoencephalogra-

phy (MEG) recordings. Studies on task-evoked network have compared enhanced activity

with the baseline state. i.e. when the brain is at rest. Enhancement is evaluated for sig-

nificance by statistical testing. Statistical parametric mapping (SPM), is a widely used

software that provides a range of methods for assessing the difference in brain activities

recorded during fMRI. In other cases, depending upon the nature of study, enhanced activ-

ity is compared with the baseline, other cognitive task or interindividual differences. In the

present work, EEG recording was used to identify the sources of activation in the brain.

1.3.2 Estimation of connectivity from neuroimaging time series

Time series refers to the neuroimaging signal in the time domain. Non-invasive neuroimag-

ing methods provide simultaneous recording from multiple brain areas. Additionally, pres-

ence of high temporal resolution makes EEG/MEG time series data very rich in oscillatory

content. Hence, providing a good base for establishing statistical dependencies between

observed time series (functional connectivity). Information processing during higher order

cognitive processes requires the functional integration of distributed brain areas. There

are multiple ways to explore the dynamics of integration in a functional network during

a cognitive task. The first step in the use of time series to evaluate the functional con-

nectivity started by calculating the cross-correlation. In cross-correlation, time series from

one channel of EEG/MEG is compared with simultaneously recorded time series of another

channel. Measuring correlation at each lag, i.e., (cross-correlation) assists in determining

the functional connectivity [40]. It is until 1965 when Cooley and Tukey introduced the

concept of Fourier transform. A mathematical algorithm that decomposes a time series into

its constituent frequency component, made up of sine waveforms [41]. Use of Fourier trans-

form in calculating spectral coherence, correlation in the frequency domain was exploited
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Figure 1.1: Extraction of brain networks from brain measurements and recordings. The
basic workflow follows four main steps. (1) Definition of network nodes, either by parcella-
tion of the brain volume into structurally or functionally coherent regions (left), or on the
basis of placement of sensors and/or recording sites (right); (2) Definition of network edges,
either by estimating structural connections from structural or diffusion imaging data (left),
or by processing time series data into “functional edges that express statistical dependencies
(right); (3) Network construction, by aggregating nodes and edges into a connection matrix
representing a structural (left) or functional network (right) [1].
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to establish statistical dependencies. Studies have provided evidence that coherence as an

effective way for communication among neuronal groups [42].

To study the temporal evolution of coherence dynamics, time-Frequency global cohero-

gram, a vector sum of all pairwise coherences across frequency and time, can be calculated

[43, 44]. This involves segmenting time series into into small windows then computing the

global coherence. Global coherences measures the extent of global coordinated activity

occurring in the brain. Hence, a continuously varying coherogram.

To establish a functional link between pairwise neuronal element, a connection matrix

is formed that contain all pairwise couplings as shown in figure 1.1. Coupling strengths

are assigned based on the statistical dependencies between time series of distributed brain

regions. Choice of association measure varies with the signal properties. Coupling can be

verified by measuring the significance. A statistical significant value marks the presence

or absence of a connecting link between the pairs of sources. For establishing statistical

significance, these values have to survive a threshold for successfully rejecting the null

hypothesis. A statistically significant connection matrix represents the presence or absence

of a link between pairs of activated sources. Presence of a connecting link between binary

elements is illustrated by the path of shortest distance between them. An interaction

between sources can be direct or indirect i.e, connection through multiple sources. Like

the anatomical connectivity, functional connectivity also constitutes a source region and a

connecting link but rather than connecting directly to the other sources, there is a large

amount of indirect anatomical links to the sources.

Independent component analysis (ICA) is a dimension reduction method of multivariate

data, used to decompose multichannel data in into its constituent subcomponents, based on

the assumption that resulting subcomponents are statistically independent. ICA method

is used to assess temporal evolution of any task- evoked network [45]. Additionally, ICA is

also used to nullify artifact produced by muscle activity, eye blinks and electrical noise [46].

One more method, effective connectivity, a combination of both structural and func-

tional connectivity is used to establish directional dependencies of one neural element over

another. It uses information embedded in the time series data to infer the causality direc-

tion. Examples include Granger causality [47, 48, 49], transfer entropy (detects directed

exchange of information between two systems by considering the effects of the state of one
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element on the state transition probabilities of the other element), dynamic causal modeling

[50].

In summary, we described the methods used to explore the spatiotemporal organization

of large scale functional networks underlying cognition.

Motivated by the fact that linear methods are more sensitive for coupling than non-

linear methods [51] we employed linear methods for establishing a functional network as

described in Chapter 2. In chapter 3 we present results of the analysis of the functional and

effective network underlying 40 Hz entrainment.
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Chapter 2

Methods: From EEG signals to

Estimation of Brain Network

Organization

“In cognitive neuroscience, the assumption is that since the brain is the source of cognitive

activity, the measurement of brain electrical activity should relate to cognition in some way”

- Torello and Duffy

2.1 Introduction to EEG

The entire spectrum of humans abilities emerges by the communication between neuronal

ensembles distributed within and across different cerebral regions. Neuronal elements are

said to be in communication when oscillatory activity between them is phase locked to

each other. Continuous interaction between brain regions can produce oscillatory activity

that results in measurable electric potentials 2.1. These electrical activity can be record by

placing several electrodes on the scalp according to the 10-20 system [52]. Hence, obtained

electric potentials represent collective postsynaptic potentials of neuronal cells, mostly in

the cerebral cortex [53]. Hans Berger in 1924 pioneered the recording of electrical activity of

human brain [54]. He noticed that during wakeful relaxation with closed eyes state, mostly

8-12 Hz oscillation are contributing to EEG signals [55]. He named these oscillations alpha
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rhythms. Sice then ECG has been being used as a noninvasive tool in various research

domains and in clinical practice. EEG can help in diagnosing patients with epilepsy, sleep

disorders, tumors and stroke by studying the unusual pattern of waves obtained. These

oscillations can be classified based on the spectral content and associated cognitive behavior.

Five main types are generally recognized: Alpha waves(8-13 Hz), Beta waves (15-30 Hz),

Gamma waves (30-100 Hz) , Theta waves (4 - 7 Hz) , Delta waves (0.5-4 Hz). Due to very

high temporal resolution (in millisecond range) EEG can be used to study evoked potentials

and event related potentials.

Figure 2.1: Electrophysiological principles of EEG

2.2 Event related potential(ERP)/Evoked responses(EP)

Event related potentials or ERPs are transient phasic deflections in the spontaneous ac-

tivity of electrophysiological rhythm of brain, following a sensory, cognitive or motor event

[56, 57]. These deflections can be monitored using a set of sensors on the scalp (e.g, by EEG

or MEG). As the evoked activity can be easily obscured by large spontaneous background

activities, signal averaging is carried out to delineate it. ERPs are time and phase locked
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to the onset of stimuli. Characteristics of an evoked potential include amplitude (measured

in mv), polarity (Negative or positive), latency period (in relation to the onset of stim-

uli,measured in milliseconds) and scalp distribution. Trend of ERP waveform reflect the

cognitive state of brain. Hence, evoked potentials provide a non invasive measure in several

clinical applications. ERPs can provide valuable insight into temporal evaluation of the

information processing and dynamics of network activity in relation to a variety of different

cognitive processes. N100 response during auditory stimulation is a typical example and

will be elaborated in the following subsection.

2.2.1 N100 response

N100 response is a large negative evoked potential measured by EEG peaking in about 100

ms after the onset of stimulus, by any discernible auditory stimulus in absence of task de-

mands [58]. In N100, ‘N’ represents negative polarity and 100 denotes the latency relative to

the onset of stimuli which can vary between 90ms to 150ms. Amplitude of N100 waveform is

highly dependent on the rise time of stimulus onset [59], interstimulus interval [60], stimulus

intensity

[61], arousal state [62] and selective attention [63]. Though N100 ERP is primarily studied

in auditory stimulation, it can also be seen in visual, somatosensory and olfactory stimula-

tions. The generators of N100 lie in superior temporal gyri of both hemisphereswhile it is

distributed mostly over the fronto-central region of the scalp [58]. N100 is associated with

perceptual processing, as indicated by its frequency specificity [64].
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Figure 2.2: Group-averaged event related potential (ERPs) of all channels averaged over

all participants and trials in rest (blue) and binaural (red) condition (refer to 3.2.2). Initial

500 ms of ERPs relative to the onset of stimuli, are plotted. A clear N100 waveform can

be seen. Y axis represents magnitude (in mV ), X axis represents time after the onset of

stimuli.

2.3 Methods

2.3.1 Cross correlation and autocorrelation

Functional connectivity can also be estimated by measuring the temporal correlation in

between two neural time series. In cross correlation analysis, correlation between two time

series is measured at some displacement in time domain in relation to the first time se-

ries. Plotting correlation at each lag i.e., cross correlation, sometime referred as a cross

correlogram. Resulting correlogram can then be interpreted as a signature of functional

connectivity.

Similarly, another function autocorrelation is used in the analysis of EEG data wherein

correlation is calculated with itself, at each lag. Whenever there is repetitive sequence in

EEG time series at certain lag (which will be equal to the length of one block of repetitive
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sequence), the correlation value will be high [40]. Dynamics of autocorrelation is plotted as

sample autocorrelation versus time lag, referred as correlogram. A correlogram can assist in

determining the auto-regressiveness of stochastic time series and measuring the proportion

of randomness in time series. For a random time series autocorrelation value will be near

zero.

2.3.2 Power spectrum

Power spectrum is distribution of power into frequency components composing that sig-

nal. According to Fourier analysis, any physical signal can be decomposed into a number

of discrete frequencies, or a spectrum of frequencies over a continuous range [41]. Power

spectrum of neurophysiological signal aids in capturing transiently stable changes in dy-

namics of brain response followed by a task. Generally, power spectrum of a neural signal

follows pattern of 1/freq distribution, commonly known as pink noise. Figure 2.3 shows

power spectrum during binaural presentation of periodic auditory stimuli at 40 cycles of

tone (1000 Hz frequency) per sec and resting state condition.
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Figure 2.3: Power spectral density of all channels averaged over all participants and trials

in rest in rest during binaural presentation of tone. plotted between 35 − 45Hz. Power

spectral density was calculated for 9 sec windows in each task condition.
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2.3.3 Global Coherence

For inspecting the extent to which distributed neuronal assemblies are synchronizing, we

employed global coherence analysis[43, 65]. Global coherence can be calculated from the

cross spectral matrix by using the eigenvalue method. Cross spectrum as an analog of cross

correlation in the frequency domain is represented by:

CX
ij (f) =

1

k
Σk
k=1X

k
i (f)Xk

j (f)∗ (2.1)

where Xk
i and Xk

j are tapered Fourier transforms of the time series from the sensors i and

j respectively, at the frequency f . From the obtained cross spectral matrix global was

computed as the ratio of maximum eigenvalue of the cross spectral matrix to the sum of

eigenvalue. i.e.,

CGlobal(f) =
SY
1 (f)

Σn
i=1S

Y
i (f)

(2.2)

where CGlobal(f) is the global coherence, SY
1 (f) is the largest eigenvalue and the de-

nominator Σn
i=1S

Y
i (f) represents the sum of eigenvalues of the cross-spectral matrix. We

used Chronux function CrossSpecMatc.m to evaluate global coherence. Global coherence

was averaged over all trials. Magnitude of global coherence was used to reveal task induced

multi-regional synchronization at different frequencies.

2.3.4 Phase synchrony

Synchronization between distributed neuronal ensembles subserves as a fundamental mech-

anism in information processing during a cognitive task [42]. Phase synchrony is employed

to detect real brain interactions by using the imaginary part of coherence. Mathematically

coherence is defined as a normalized cross spectrum.i.e.,

Cij(f) =
Sij(f)

(Sii(f)Sjj(f))1/2
(2.3)

Coherence represents frequency domain analogue of correlation coefficient. Coherence

value contains magnitude and imaginary part that represent amplitude and phase compo-
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nents, respectively. Imaginary coherence circumvent artifacts that causes overestimation

biases arising from volume conduction [66], a major limitation of EEG during interpreting

neuronal interdependency. Imaginary coherence exploits the fact that phase similarities

among time series arising from a common reference or volume conduction occur with zero

time delay. Thus, by omitting the real component of coherence, which mostly contains sim-

ilarities with zero time lag, we removed spurious associations and limit the analysis to the

imaginary component of coherence which represents true interactions between brain areas

occurring with a certain time lag.

2.3.5 Statistical tests for coherence differences

The difference between two coherence values between baseline condition and task condition

at a specific frequency is calculated using Fisher’s Z transformation

Z =
(tanh−1(|C1(f)|))− (1/d.f.1 − 2)− (tanh−1(|C2(f)|))− (1/d.f.2 − 2)√

(1/d.f.1 − 2) + (1/d.f.2 − 2)
(2.4)

where d.f.1 and d.f.2 denote the degrees of freedom (2 ∗ N ∗ K), respectively in the

first and the second condition while C1 and C2 are coherence values at the frequency of

interest. Resulting Z value was considered as an observed test statistic that was validated

for significance by successful rejection of the null hypothesis. For creating a null distribution

random partitions were done 1000 times by shuffling trials of two conditions and measuring

coherence in each permuted data. Afterwards, a histogram is plotted comprising all 1000

coherence values from permuted data (see Figure 2.4). Observed value is then compared

with the 99th and 1st quantile of the respective permutation distribution to validate if it

is smaller than 0.1 or larger than 99.9 (threshold values were set to 1%). If observed test

statistic survive threshold testing, then it reflect that the probability of getting this result

by chance is 0.01. Henceforth difference is considered as significant [67].
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Figure 2.4: Histogram of coherence values calculated by shuffling the trials of task and rest

conditions, 1000 times.
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2.3.6 Granger causality

To evaluate the causal relationship in all significantly interacting channel pairs, we employed

Granger’s causality method. It exploit information embedded in the time series data as a

fundamental tool to establish direction and strength of causal influence. Granger’s causality

is based on the prediction of time series of one neural time series by the temporal precedence

of another time series [68].

Consider two neuronal time series X and Y be modeled as bivariate autoregressive (AR)

processes of the pth order

X(t) = Σp
j=1A11(j)X(t− j) + Σp

j=1A12(j)Y (t− j) + E1 (2.5)

Y (t) = Σp
j=1A21(j)X(t− j) + Σp

j=1A22(j)Y (t− j) + E2 (2.6)

where A is the coefficient matrices of model at individual lag that was calculated using

multivariate Yule Walker equations, E1 and E2 representing two prediction errors that are

independent of each other and has no temporal correlation. If after inclusion of the cross

regressive equation in the univariate AR model that already have past values of current

time series, the variance of the prediction error is reduced significantly then it suggests the

other signal is Granger causing current signal.

Furthermore, Granger’s causality can be measured in the spectral domain as explained

in [69, 70]. Calculation of Fourier transformation followed by generalization of equations,

spectral matrix at frequency (f), of signal X and Y is represented as

S(f) = X(f)Y ∗(f) = H(f)ΣH∗(f) (2.7)

where “*” symbolize matrix transposition and complex conjugation and

H(f) = (Σm
k=0Ame

−im2pif )−1 as a transfer function. Subsequently, Granger causality from

X to Y represented as

Gx−→Y (f) = −log(1−
(WXX −

W 2
XY

WXX
)|HXY (f)|2

SY Y (f)
) (2.8)
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where W is the covariance matrix of the prediction error, H is the transfer function, S is

the cross spectral matrix of bivariate model of X and Y are neural time series, at frequency

f . Similarly, one can define Granger’s causality from Y to X as

GY←−X(f) = −log(1−
(WY Y −

W 2
XY

WXX
)|HXY (f)|2

SY Y (f)
) (2.9)

After measuring causality in both directions one can locate the ‘source’ and ‘effect’

regions of brain by comparing the Granger’s causality values in both the directions.
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Chapter 3

Results: Large-scale Neural

Network during Entrainment

“The same stream of life that runs through my veins night and day runs through the world

and dances in rhythmic measures” - Rabindranath Tagore

3.1 Introduction to entrainment

When two independent physical systems oscillating at different frequencies are placed in

closed proximity, they will start resonating at the same frequency after some time. This

property of synchronization is known as entrainment. Entrainment by an external stimuli

reflect a magnificent expression by nature. One such example of synchronization from our

daily lives can be seen while an audience claps [71] or while we tap our feet in synchrony

with the beat of a song. Furthermore, in our brain synchronous excitation of neural tissue

generate oscillations as described in chapter 1 and 2. These neuronal oscillators exhibit

the characterstic of entrainment by alignment of the frequency of their synchronization to

the temporal dynamics of external stimuli [72]. In same context one can define brainwave

entrainment that refers to the synchronization of the brain with the frequency of external

stimuli [73]. These stimuli involved in inducing brainwave entrainment can be auditory,

visual or tactile. These kind of generated neural rhythm is often phase locked to the

individual cycles of periodic stimuli as presented in [74]. Therefore, entrainment seems

to be a mechanism of phase alignment of the neuronal processing to temporal dynamics of
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external rhythms. [75] showed the role of brainwave entrainment in inducing various mental

states. Entrainment at 40Hz has gained maximum interest by the work of [76, 31]. They

observed brainwave entrainment can be induced by presenting periodic stimuli at the rate of

40Hz. Entrainment at 40Hz induces a steady state response in brain that is often exploited

in measuring hearing threshold [77]. In a recent study, it has been found that entrainment

to gamma rhythms (Specifically at 40Hz) have implications to attenuate amyloid plaques

in Alzheimers’ mice [78]. Despite having enormous potential for theoretical and clinical

applications, network underlie this phenomenon is poorly understood.

In the present study, we showed results from a novel analysis of functional networks

estimated from a set of scalp EEG signals when subjects were presented with periodic

auditory stimuli at 40Hz. This study wishes to ascertain the presence of large-scale neuronal

networks underlying such activities. Additionally, our aim is to see the variation in brain

response during binaural stimulus and both monaural stimulus.

3.2 Experiment

3.2.1 Participants

In this experiment 21 healthy, right-handed students from National Brain Research Centre

(Manesar, Haryana) ranging from 22 to 39 years of age (mean age 28 years) volunteered to

participate. All subjects had normal or corrected to normal visual acuity. Informed consent

were provided to all the participants. The Institutional Human Ethics Board in National

Brain Research Centre approved the study protocol.

3.2.2 Stimuli and trials

Stimuli consisted of four conditions, each of 100 trials making a total duration of 200 sec-

onds. Each trial consisted of one second of tone and one second of rest. Sounds were pure

tones of 1000 Hz frequency, presented 40 times in a second as displayed in Figure 3.1 with

the conditions: 1.) Binaural (in both ears), 2.) Monaural left (only in left ear), 3.) Monau-

ral right (only in right ear) (see Figure 3.2). In addition, 4.) Baseline condition was also

presented to the subjects in which there was no tone given in earphones. Subjects were

instructed to stay still in sitting position and fixate at visual cross displayed on computer
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screen during each condition to reduce eye movements and listen to tones attentively. When

the subjects were performing experiment, electrical activity of the brain was recorded using

scalp electroencephalography.
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Figure 3.1: Periodic auditory stimuli having 40 cycles of 1000 Hz tone, presented in binaural,

monaural right and monaural left conditions

Figure 3.2: Stimuli conditions

3.2.3 Neuroimaging procedure

For recording of electrical activity, EEG with high density electrodes (64 sensors) were used.

Recordings were done in a noise proof and electrically sheltered room. Recording software

NeuroScan (SynAmps2) system was used, having 1 KHz sampling rate. Abrasive electrolyte

gel (EASYCAP) was used to make contact with the scalp and impedance was reduced to 5k

in each channel. Acoustic stimulus were given using foam inserted earphones. CZ electrode

was used as a reference electrode.

3.2.4 Preprocessing of EEG signals

Epochs of 900 ms were extracted from the raw data excluding 50 ms flanking regions of time

series. Obtained epochs then bandpass filtered out in the frequency range between 2 - 48

Hz. Followed by detrending (Baseline correction) of data to remove linear trends from the

signal. Trials having voltage greater than +100mv or lower than −100mv were, considered

as artifacts, therefore discarded. Furthermore, Since recordings were induces steady - state

activity, we concatenated time series of ten epochs to enhance spectral resolution. This
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resulted in the enhancement of contrast between noise and signal. Pre-processed data

resulted in time series of 9 s with 209 trials.

3.3 Results and discussion

3.3.1 Cross correlation

Power spectral analysis revealed that right mastoid sensor (43th or M2 sensor) and centro

frontal sensor (10th or CZ sensor) have maximum spectral power at 40 Hz. So it was

assumed that this region have the most robust effect of entrainment. Hence, we performed

cross correlation analysis on ERP (time series of EEG grand averaged over all trials and

subjects) of M2 sensor during binaural condition. A cross correlogram is plotted in Figure

3.3. We observed a very high negative correlation at zero lag. Time series of both channels

were similar, nonetheless displaying negatively correlation throughout the time series as

shown in Figure 3.4. This anti-correlated may be represent the dipole formed by the voltage

gradient distribution across the scalp.
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Figure 3.3: Cross Correlogram of 43th and 10th electrode during binaural condition.
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Figure 3.4: ERPs of 43th and 10th electrode during binaural condition. Results display a

phase shift of 90◦ in time series with respect to other

3.3.2 Autocorrelation

We performed an autocorrelation analysis on ERP (grand averaged over all trials and sub-

jects) of M2 sensor (showing maximum 40Hz spectral power) during binaural condition. A

correlogram is plotted in Figure 3.5. Significance of auto correlation is determined my com-

paring the value with the threshold value displayed as red lines. If the autocorrelation value

is higher (lower) than this upper (lower) threshold, it would be considered as significant

at corresponding lag (p < 0.05). We found that autocorrelation values cuts off at many

places, after zero lag second maximum autocorrelation obtained at lag of 63 ms relative

itself. Autocorrelation analysis suggest response is coming from a non-random process. In

a random data autocorrelation at every lag would be near zero.
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Figure 3.5: Correlogram of 43th electrode during presentation of periodic auditory stimuli

at a 40 tones (1Khz frequency) per sec. Red lines represent upper and lower bounds for

autocorrelation with significance (p < 0.05).

3.3.3 Power spectrum analysis

Power spectrum were calculated for each electrode in every condition. Non-parametric

statistical comparison was done to compare test conditions with baseline condition. The

purple ‘ * ’ on the topoplots marks the position of electrodes that are significantly different

from the baseline condition at 99 percent confidence level. The blue areas on the scalp

map highlight the regions that show decrease in the spectral power and the orange and

red regions highlight the regions that show an increase in the spectral power. We observed

the enhancement of spectral power at individual participant and group level at 40 Hz in

distributed scalp sensor locations. Pattern of distribution of difference in the spectral power

between task and rest at 40Hz is found to be similar in both conditions (i.e., One large

cluster in frontal central areas, peripheral parieto occipital regions and in mastoid sensors).

Only difference was in magnitudes in different conditions. Considering only fronto central

and right hemispheric parieto occipital clusters, activity was found relatively higher in fronto

central than the right hemispheric parieto occipital cluster in monaural left condition(Figure
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A). This effect got reversed in monaural right condition(Figure B). In binaural condition

number of significantly different sensors were higher in right peripheral parieto occipital

region than compared to left peripheral parieto occipital.
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Figure 3.6: Power Spectrum averaged over all sensors, measured for monaural left (red),
monaural right (green), binaural stimuli (blue) and baseline (Black dash) conditions.
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Figure 3.7: Topography and purple asterisk marks significant cluster difference (p < 0.01)

of spectral power between task and rest at 40Hz during presentation of periodic auditory

stimuli at a 40 tones (1Khz frequency) per sec for A) Monaural left, B) Monaural right and

C) Binaural conditions.

3.3.4 Global coherence analysis

Global coherences during all conditions were calculated separately in each hemisphere across

a frequency range of 2− 48Hz maintaining a frequency resolution of 0.06Hz, to reveal the

influence of lateralization during different conditions. Non-parametric statistical testing

were done to compare the global coherences of each hemisphere during presentation of
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monaural stimuli. (Note: Central electrodes were considered as common electrodes in

both hemispheres). We observed task-specific enhancement of global coherence specifically

at 40Hz (p << 0.01). There was relatively higher global coherence at 40Hz during the

presentation of monaural left stimulus in left hemisphere compared to the right hemisphere.

Likewise during the presentation of monaural right stimulus global coherence was higher

in right hemisphere compared to the left hemisphere (Figure 3.8 and Figure 3.9), (p <

0.5). Furthermore, the cumulative global coherence was more in the case of binaural tone

compared to the monaural tone. To check the inter trial variability we made three partitions

of the trials. One batch is from 1st trial to 50th trial, second from 25th to 75th trial and

third was from 51th to 100th trial. The results were consistent over all trials i.e, low inter

trial variability.

Figure 3.8: Global coherence of left hemisphere
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Figure 3.9: Global coherence of right hemisphere

Figure 3.10: Global coherence of whole brain
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Figure 3.11: Global coherence as measured for all the conditions in three partitions by

dividing trials into 1st to 50th trial, 25th to 75th trial and third from 51th to 100th trial.

3.3.5 Imaginary coherence analysis

Measurement of pair wise imaginary coherence was done to detect spatial dynamics of net-

works. A 64∗64 connection matrix containing all pairwise sensor combinations of coherence,

was computed for all the conditions at 40Hz . A coherence matrix array displays the mag-

nitude by which two sensors coupled to each other. Imaginary part was extracted using

the imag.m function of MATLAB. Connection matrix is shown in figure 3.12 Many chan-

nels have significant phase coupling with other channels at 40Hz (p << 0.01). We plotted

a headmap for each condition showing all significant interaction among pairwise channels

3.13. We observed all of the interaction long range interactions between channel pairs with

phase shift in oscillatory activity from frontal to occipital channel pairs. In monaural left

condition there are interactions from left parieto occipital cortex to the prefrontal cortex.

In monaural right condition interactions of brain areas from right hemispheric non-primary

auditory cortices to the prefrontal cortex are seen. Synchrony map of binaural condition

displays bilateral distribution of synchronization among channel pairs.
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Figure 3.12: Pairwise evoked imaginary coherence in all three stimulus conditions at 40Hz

(p << 0.01). Red areas representing positive phase synchrony. Non significant values are

set to zero.
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Figure 3.13: Head map depicting channel interactions during presentation of A) Monaural

left B) Monaural right and C) Binaural stimuli at 40Hz. Each blue line represents an

interacting channel pair and red dashed line represents an interhemispheric channel pair

interaction. The strength of interactions is represented by the thickness of the line.

3.3.6 Granger causality analysis

Since phase synchrony provides only an undirected measure of functional connectivity, to

establish direction and strength of causal influence in all the interacting channel pair we
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employed Granger causality (GC) method. Granger causality was measured for each con-

ditions in all the significant interacting channel pair from imaginary coherence analysis.

Statistically significant Granger causality spectral peaks were identified by a constructing

random 500 permutations (as described for coherence) by shuffling trial order of electrode

pair of interest. Thereafter, Granger causality was calculated for each permutation. For

the electrode pair maximum GC value was identified over the frequency spectrum. Then a

distribution of maximum GC values was plotted and from that distribution 99th quantile

value (p < 0.01) was set as the threshold for significance for electrode pair. Headmap was

plotted for each condition illustrating the causal influence among channel pairs 3.14. A

careful examination of causality network during monaural and binaural conditions revealed

that a causality network during binaural condition share network dynamics with cumulative

network during both monaural conditions. In binaural condition, we observed GC from the

temporal region of RH is focused on the M1 region of left hemisphere (LH), through the cen-

tral frontal areas, further influencing right hemisphere (RH). There are some bidirectional

GC also from the frontocentral electrode to both the lateral regions of LH and RH. Since

the brain attained a steady state, there may be a positive feedback loop that is subserving

the brain to maintain a steady state. Bidirectional causal influence can be because of some

latent driver or a common driver interacting with both electrodes. A Frontal pole to right

parieto-occipital pole causality was also observed. In Monaural left condition indirect GC

from the temporal region of RH to the temporal region of LH and bidirectional GC from

the frontocentral sensors to parieto occipital sensors of LH was observed. In monaural right

condition GC from the temporal region of RH reaches to the parieto occipital region in the

same hemisphere through central frontal areas.
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Figure 3.14: Headmap depicting causal influence between interacting channel pair (obtained

from imaginary coherence analysis) during presentation of A) Monaural left B) Monaural

right C) Binaural condition. Black arrows represent bidirectional causal influence between

the sensors. Dashed arrows represent unidirectional causal influence in the direction of the

arrow. Strength of causal influence is represented by the intensity of the color of the arrows.
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Chapter 4

Conclusion and Summary

Characterizing the dynamics of the whole brain network is essential for understanding the

functional organization during entrainment in brain. In the present study, we are showing

results from a novel analysis of functional networks estimated from a set of scalp EEG signals

when subjects were presented with periodic auditory stimuli at 40Hz. We have shown the

information processing in the brain during entrainment can be represented in terms of brain

oscillations and large-scale functional brain network. We explicitly focused on investigating

the characteristics of the brain network that facilitate the 40Hz entrainment. The main

findings of the study are:

1. Entrainment of cortical areas to the frequency of presentation (i.e, at 40Hz)

2. Recruitment of large-scale oscillatory brain networks at 40Hz as reflected by global

coherence analysis.

3. Ipsilateral dominance in information processing networks during the presentation of

monaural stimuli.

4. We found an extensive network consisting mostly long range causal interactions. This

network involves causal influence from right parieto occipital sensors to the centro

frontal area. Thereafter information is sent to left mastoid region, which further drive

right right parieto occipital sensors.
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4.1 Area specific 40 Hz steady state response

We observed the enhancement of spectral power at individual participant and group level

at 40Hz in distributed scalp sensor locations. Clusters of enhanced spectral power was

present in frontal central areas, peripheral parieto occipital regions and in mastoid sensors.

Maximum spectral activity was observed in both mastoid electrodes. Transverse temporal

gyrus (Heschl’s gyrus) beneath the mastoid region is the first cortical structure for auditory

stimulus processing. Additionally, activation in Heschl’s gyrus associated with the temporal

regularity of sounds [79]. This suggest that the locus of the steady state response lies in the

auditory cortex. Future studies need to unravel the cortical foci of these activations using

source localization methods. Power spectrum of each electrode showed a large peak at alpha

band (8 to 12 Hz), in all the conditions including the the baseline condition. Alpha band

oscillations has been demonstrated as the dominant frequency in the human brain and is

associated with attentional processes [80, 81]. These alpha rhythms are believed to be gen-

erated by the bidirectional communication between neocortical visual areas and thalamus,

reflect the electrical activity of large-scale networks [82]. Therefore, the heightened power

in the alpha band can be attributed to arise from the underlying attentional network.

4.2 Presence of large scale neuro-cognitive network

Global coherence is a measure of the extent of coordinated neuronal activity over the whole

brain. A large value of global coherence marks the presence of large scale brain networks

(neuro-cognitive networks) underlying cognitive tasks [18]. We observed task-specific en-

hancement of global coherence at 40Hz, revealing an induced large-scale synchronization of

neuronal assemblies at this frequency. We also observed global coherences in each hemi-

sphere separately. There was relatively higher coherence during monaural left stimulus in

left hemisphere compared to right hemisphere. Likewise, during monaural right stimulus

presentation, coherence was higher in right hemisphere compared to left hemisphere. Thus,

our results indicate the dominance of an ipsilateral areas underlying processing of monaural

repetitive auditory stimuli. Absence of stimuli can also elicit a certain level of coherent

40Hz oscillation. This type of oscillations has been postulated as a mechanism of binding
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of spatially distributed visual activity [83] and linked to a characteristic feature of dream

state in human [31]. However, the oscillatory networks we see are of mostly primary sensory

origin and most likely interact with higher order cognitive areas of frontal cortex.

4.3 Sub-networks for induced 40 Hz rhythms

We observed a task specific significant enhancement of coherent oscillations specifically

at 40Hz compared to baseline condition. Such, long distance synchronization have been

interpreted as a putative mechanism for long-range neural integration during cognitive tasks.

Researchers have argued that the existence long-range synchronizations between widely

separated brain regions, subserve towards “perceptual binding” [84, 85], as a framework of

integration of information in distributed neuronal ensembles.

4.4 Causal interactions underlie entrainment

Granger causality was measured for each of condition and among all the significantly in-

teracting channel pairs from imaginary coherence analysis. Statistically significant Granger

causality spectral peaks were identified using non parametric statistical tests. A careful

examination of causality network during monaural and binaural conditions revealed that a

causality network during binaural condition share network dynamics with cumulative net-

work during both monaural conditions. We observed that neuronal assemblies at distributed

sites mostly in the sensory cortices area involving frontal central areas, peripheral parieto

occipital regions and in mastoid sensors were joined in large-scale networks oscillating at

40Hz during maintenance of a steady state response. By distinguishing between large-scale

network synchrony and that due to mutual interactions, Granger causality analysis pro-

vided a deeper understanding of cortical interaction patterns than could be obtained from

synchrony measures. Grangers causality analysis reveals that both unidirectional and bidi-

rectional causal influence is an important mechanism for brainwave entrainment at 40Hz.

In binaural condition we observed GC from the temporal region of RH is directed towards

the M1 region of left hemisphere (LH), through the central frontal area which in turn influ-

ence the right temporal areas. Bidirectional GC between the frontocentral electrodes and
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the lateral regions of LH and RH were also observed. This suggests that there may be a

positive functional feedback loop that is subserving candidate brain regions to maintain the

steady state dynamics. Bidirectional causal influence can also exist due to the presence

of some latent driver or a common driver interacting with both electrodes. This can be

teased out with multivariate techniques in the future. There are studies that suggest 40Hz

entrainment is produced from the interaction of primary input in the auditory cortex and

cyclic feedforward influence of nonspecific thalamic nuclei. The latter hypothesis can be

supported by the presence of feedback loop and result in the activation of temporal cor-

tex and other regions of brain [86]. Thus, the presented causality network may possibly

indicate the mechanistic basis of entrainment resulting in the generation of coherent 40Hz

oscillations induced by the periodic auditory stimuli.

In summary, we found stimulation by a periodic auditory stimuli at 40Hz entrain a

large scale brain network at the frequency of stimulation and evokes a steady state response.

Several theories suggest that 40Hz is the rhythm at which various modalities binds. The

40Hz oscillations may be the medium of communication over long ranges [87] thus possibly

bring various percepts together and thus maintaining awareness. Exogenous entrainment

of these networks are possible, as we have shown in our study. In conclusion, we establish

the presence of large-scale effective network that support the entrainment, encompassing

bilateral auditory and frontal areas during the processing of 40Hz auditory stimuli.
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