
 

A BIOPHYSICAL MODEL OF CROSS 

FREQUENCY COUPLING 

By Anagh Pathak 
 
 
 
 
 

A Dissertation Submitted to the Faculty of  
The National Brain Research Centre in Partial 

 Fulfilment of the Requirements for the Masters in Neuroscience 
 
 
 

 
National Brain Research Centre  
Manesar, Gurugram, Haryana 

May 2018 
 

 

 

 

 



1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

 

DECLARATION BY THE CANDIDATE 

 
I Anagh Pathak hereby declare that the work presented in this dissertation is carried out by me,                 
under the guidance of Arpan Banerjee, National Brain Research Centre(Deemed University),           
Manesar, Haryana. 
 
I also declare that no part of this dissertation has been previously submitted for the award of any                  
degree or diploma at National Brain Research Centre(Deemed university) or any other            
University. 
 

 
 
 
 

Anagh Pathak 
MSc. final 

 
Place: Manesar 
Date: 31 May 2018 
 

 

 

 

 

 

 

 

 

 

 

 



3 

 

ACKNOWLEDGEMENT 

 

I would like to begin by thanking my advisor Dr. Arpan Banerjee, who motivated me to choose                 

an independent topic of research, based on my interests. The work contained herein would not               

have been possible without the blend of independence and personal guidance afforded to me              

by Dr. Banerjee. I would also like to thank Dr. Dipanjan Roy for sage advice, support and                 

countless helpful discussions.  

A personal debt is owed to my wonderful classmates, specially Kasturi, Sreyashi, Varsha and              

Vini, who were the sounding boards for my ideas. Their patient ears and suggestions over               

evening tea,  went a long way in helping me develop my ideas.  

I am especially thankful to my labmates at the Cognitive Brain Dynamics laboratory who shaped               

this dissertation with their advice, critiques and praises. I hope I have addressed at least some                

of their suggestions in this dissertation. 

I am also thankful to Archith, Hyma and Raghav for their constant companionship. 

Lastly, I would like to thank my family for inspiring me to take up science and standing by me all                    

throughout my journey. 

 

 

Anagh Pathak 

 

 

 

 



4 

 

ABSTRACT 
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Brain signals, as recorded by EEG/MEG/LFP show robust oscillatory activity, when filtered in             

appropriate frequency bands. There is a long tradition in neuroscience to think of these              

oscillations as indicative of neural computation. Oscillations have been implicated in diverse            

processes such as attention, working memory, perception and have also been involved in             

various pathologies such as epilepsy and schizophrenia. While previously, different oscillations           

were studied in isolation, recent research has hinted towards studying interactions between            

frequency bands. These interactions, termed as cross frequency couplings are thought to            

underlie many cognitive processes.  

Here we present a model for cross frequency interactions in the brain, by using simulations               

involving a modified Wilson-Cowan model. Wilson-Cowan model is acknowledged to be a            

biophysically realistic neural model of macroscopic brain activity as observed in EEG. 

We demonstrate phase amplitude and phase frequency coupling in neural time series.            

Additionally, the model can explain some recent theories of oscillatory dynamics in            

neurophysiological signals. 
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What makes neuroscience so exciting is that for the first time we are trying to understand that which 

makes all understanding possible. 
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Neuroscientists have known about neural oscillatory activity for close to a century. The first              

observations were made by Hans Berger in 1924 by using a primitive electroencephalograph.             

Berger observed, to his amazement, that on placing sensitive electrodes on the human scalp,              

one could observe robust oscillatory activity in the subsequent traces. Berger’s paper titled Uber              

das electrenkephalogramm des Menschen (Berger 1936) (On the EEG in humans), published in            

1929, was the first in a series of 23 articles on the subject. Berger characterised changes in                 

oscillations due to attention, mental effort and cerebral injuries, topics that are still active              

subjects of modern neuroscientific research. Using his primitive setup, Berger discovered and           α  

rhythms, and even coined the term electroencephalogram .β  

 

Based on their characteristic frequency range and amplitude, endogenous neural oscillations           

can be broadly categorised as delta(0.5-4 Hz), theta(4-8 Hz), alpha(8-13 Hz), beta(13-30 Hz)             

and gamma(30 -80 Hz) rhythms(Wang 2006). The Delta rhythms are high amplitude waves that              

are associated with NREM sleep, also known as slow wave sleep. Theta rhythms have been               

described in the hippocampus(hippocampal theta) and in the cortex (cortical theta), and are             

thought to play a crucial role in memory formation and navigation. Alpha waves, also called               

Berger waves in honour of Hans Berger, are thought to be generated by the interaction of the                 

thalamus and the cortex. Alpha activity is thought to be important for selective attention and               

working memory. A recent theory associates alpha activity with information gating in the cortex.              

Beta activity predominantly occurs in the motor cortex where it is associated with muscular              

contractions and movements. Gamma rhythms constitute the fastest rhythms in the brain(Wang            

2006). Gamma waves are widely believed to be involved in visual awareness and feature              

binding. 

 

https://paperpile.com/c/rRm4tM/Hqlk
https://paperpile.com/c/rRm4tM/HTcP
https://paperpile.com/c/rRm4tM/HTcP
https://paperpile.com/c/rRm4tM/HTcP
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Fig 1.Oscillatory activity as seen on filtering EEG signals. 

 

 

Neural oscillations, as measured in EEG/MEG are generated by the synchronized activity of             

neural ensembles. Synchronized activity of large number of neurons leads to the creation of a               

macroscopic signal that can be captured as the corresponding scalp potential(EEG) or            

current(MEG). Neural oscillations have been observed at all scales of neural organization-            

single neurons, activity of groups of neurons and activity from brain areas.  

 

At the same time, oscillations have served as biomarkers for various brain            

pathologies(Schnitzler and Gross 2005). 

 

 

https://paperpile.com/c/rRm4tM/83kh
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1.1 Functional Roles of Brain Oscillations 

As noted, even as early as Berger, scientists were implicating neural oscillations in brain              

processes such as attention, memory, brain pathologies etc. Since then, various theories have             

been put forward that associate oscillations with the functioning of the brain. Below, we discuss               

a few examples of the computational role of rhythmic activity. 

The binding problem was first formulated by Von Der Malsburg, who asked how different              

features of the same object are bound together to form a unified percept of the object as a                  

whole. 

The oscillatory theory of feature binding posits that different features of the same object are               

‘bound’ together through synchronization of neural assemblies that are responsible for coding            

the individual features of an object(von der Malsburg 2001). 

Periodic motor movements like respiration, walking, running, mastication etc. are generated by            

oscillatory motor activity through autonomous central pattern generators. Central pattern          

generators have the capacity to produce rhythmic output in the absence of rhythmic inputs              

(Hooper 2001). Even basic bodily functions such as heartbeat and peristalsis are subserved by              

rhythmic oscillatory activity.  

 

Neural oscillations have been linked to processes such as information transfer, memory and             

perception. Coherent neural activity has been regarded as a substrate for neuronal            

communication in the brain(Fries 2005). Phase synchronization has been linked to memory            

processes in the brain(Fell and Axmacher 2011). It has been proposed that phase             

synchronization between neural oscillators supports both working and long term memory by            

facilitating neural communication and plasticity. This hypothesis is borne out of observations of             

https://paperpile.com/c/rRm4tM/RtHw
https://paperpile.com/c/rRm4tM/z70z
https://paperpile.com/c/rRm4tM/5YTE
https://paperpile.com/c/rRm4tM/Q761
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increased phase synchronization during various memory processes such as working memory           

maintenance and long term memory encoding and retrieval(Fell and Axmacher 2011). 

Abnormal synchronization in brain rhythms has been linked to pathologies such as Parkinson’s,             

other movement disorders and neuropsychiatric diseases. For example, electrophysiological         

recordings of basal-ganglia-thalamocortical circuits in Parkinsonian primate models and patients          

with Parkinson’s disease have provided new insights into the functional roles of oscillations and              

oscillatory synchronization in normal and disturbed motor behavior. Specifically, enhanced beta           

and reduced gamma oscillations are associated with the poverty and slowness of movement             

that is characteristic of Parkinson’s disease. Additionally, tremor seems to arise from abnormal             

synchronization of oscillations in several cortical and subcortical areas(Schnitzler and Gross           

2005).  

1.2 Cross Frequency Coupling 

As far back as 1995, Lisman and Idiart invoked cross frequency interactions to explain              

psychophysical measurements that indicated that human subjects can store approximately          

seven short term memories(Lisman and Idiart 1995). In their famous paper, titled ‘Storage of 7              ±

2 short term memories in oscillatory subcycles’ , Lisman and Idiart proposed that each short term               

memory is stored in a different high frequency sub cycle of a low frequency oscillation. Building                

on this, Canolty et. al. (R. T. Canolty et al. 2006) reported robust coupling between the high-                 

and low-frequency bands of ongoing electrical activity in the human brain. Specifically, they             

observed coupling between the phase of theta oscillations(4-8 Hz) and power in the high              

gamma (80 -150 Hz) band, recorded using electrocorticography. Axmacher et. al.(2009) used            

intra cortical EEG recordings in epilepsy patients while they performed multi item working             

memory retrieval task to show robust Cross frequency coupling in memory           

https://paperpile.com/c/rRm4tM/Q761
https://paperpile.com/c/rRm4tM/83kh
https://paperpile.com/c/rRm4tM/83kh
https://paperpile.com/c/rRm4tM/Pa4J
https://paperpile.com/c/rRm4tM/DTXI
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maintenance(Axmacher et al. 2010). Colgin(Colgin 2015) discusses the critical role played by            

theta (5-10 Hz)- gamma(30-100 Hz) interactions in memory encoding and retrieval. Bonnefond            

et. al(Bonnefond and Jensen 2015) recorded MEG activity in healthy subjects while they             

performed a modified Sternberg working memory task in which distractors were presented in the              

retention interval. They showed that alpha(9-12Hz) - gamma(80-120Hz) phase amplitude          

coupling was high during the anticipatory pre-distractor period. Vaz et. al.(Vaz et al. 2017)              

demonstrate the role of phase amplitude coupling in encoding episodic memories in humans             

using intracranial electrodes. Recently, Richter et. al.( Richter et al. 2017) demonstrated robust             

phase amplitude coupling between the infra slow gastric oscillations(~0.05 Hz) and           

spontaneous brain dynamics during resting-state eyes open condition. This method extends           

cross frequency coupling to the realm of brain-viscera interactions(Richter et al. 2017). Phase             

amplitude coupling has also been implicated in pathologies like Schizophrenia and Epilepsy.            

Hirano.et. al (Hirano et al. 2018) report abnormal patterns of phase amplitude coupling in the               

EEG recordings obtained from the auditory cortex of patients suffering from Schizophrenia.            

Amiri et. al.(Amiri, Frauscher, and Gotman 2016) report elevated phase amplitude coupling in             

the onset zone of focal epileptic seizures.  

 

1.3 Functional Roles of Cross Frequency Coupling 

 

Various theoretical models have been put forward that aim to understand the broader             

computational role of cross frequency interactions(Ryan T. Canolty and Knight 2010). A recent             

theory has proposed the existence of oscillatory hierarchies that control neuronal excitability and             

stimulus processing in the auditory cortex(Lakatos et al. 2005). According to this model, EEG              

https://paperpile.com/c/rRm4tM/ck6g
https://paperpile.com/c/rRm4tM/vaAi
https://paperpile.com/c/rRm4tM/zwjM
https://paperpile.com/c/rRm4tM/xWaU
https://paperpile.com/c/rRm4tM/dBSm
https://paperpile.com/c/rRm4tM/Bwm8
https://paperpile.com/c/rRm4tM/Nh4k
https://paperpile.com/c/rRm4tM/L1VY


13 

oscillations reflect cyclical variations in cortical excitability across spatial scales of brain            

operation. Experiments based on this model suggest that EEG activity in the auditory cortex is               

hierarchically organized such that the phase of delta modulates theta amplitude and theta phase              

modulates gamma amplitude(Lakatos et al. 2005). This is an example of a theory that relies on                

cross frequency interactions to explain the organization of EEG spectra. Another recent theory             

that utilizes cross frequency interactions to explain cortical excitability is the ‘gating by inhibition’              

hypothesis(Jensen and Mazaheri 2010). According to this model, alpha band activity routes            

information to task relevant areas by inhibiting information processing in task irrelevant areas.             

The model posits that gamma activity, which signifies local information processing, is phasically             

modulated by ongoing alpha activity. Gamma activity increases during the trough of alpha             

oscillations and decreases when alpha reaches its peak. Accordingly, optimal task performance            

will be correlated with alpha activity in task irrelevant areas. Several examples have been cited               

for the theory of gating by inhibition. For instance, it has been demonstrated that alpha activity                

increases in visual areas during motor tasks and vice versa. In studies of spatial attention, it has                 

been shown that alpha activity increases on the side that is ipsilateral to stimulus presentation,               

whereas there is a corresponding decrease in alpha on the contralateral side. Alpha modulation              

due to covert attention is so robust, that it has been used as a control signal for brain-computer                  

interfaces. A recent study found that alpha power at parieto-occipital sites was dependent on              

the direction of attended speech(Jensen and Mazaheri 2010). 

 

As is evident from the previous paragraphs, recent interest in the field has focused on               

characterizing the interactions between neural oscillations when the subject(human or animal) is            

performing certain cognitive tasks. In the following, we take a closer look at the methodological               

aspects of observing cross frequency interactions in real electrophysiological data. 

https://paperpile.com/c/rRm4tM/L1VY
https://paperpile.com/c/rRm4tM/Hjby
https://paperpile.com/c/rRm4tM/Hjby
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Fig 2. Possible scenarios if  information is to be routed  from node a to node b. A) Information is 

routed through synaptic inhibition of a-c connection. This would require fast synaptic time 

scales.B) Routing is achieved by phase synchronization between a and b and desynchronization 

between a and c C) Routing achieved through gating by inhibition. 
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1.4 Types of CFC 

Any periodic activity can be characterised by three variables, namely - instantaneous phase,             

amplitude and frequency. Based on the nature of the interaction, we can broadly categorize              

CFC as either- phase to phase, power to power, phase to power or phase to frequency                

interaction(Jensen and Colgin 2007). Following is a representation of the possible forms cross             

frequency couplings can take. 

 

Fig 3. Possible forms of cross frequency coupling based on the power, phase and frequency of 

the signal 

 

Phase phase coupling is said to exist when the phases of two oscillators are correlated.               

Formally speaking, the instantaneous phases of the two oscillators obey the following            

relationship, 

https://paperpile.com/c/rRm4tM/Nlxo
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with |Φ | const.,1,2 <  
 

Φ ΦΦn,m = n 1 − m 2  

 

Where are the instantaneous phases of the two oscillators and n,m are integers.  Φ1,2             

Phase-phase coupling, also called n:m coupling, has been shown to exist between theta and              

gamma oscillations in the hippocampus(Belluscio et al. 2012). 

 

Power- Power coupling is said to exist when the amplitude envelopes of the two oscillators are                

correlated. Phase to Power Coupling, referred here as phase-amplitude coupling(power          

corresponds to squared amplitude), is said to exist between two oscillators when the             

instantaneous phase of an oscillator is correlated with the phase of the instantaneous power of               

the second oscillator. Phase amplitude coupling naturally assumes the existence of a low             

frequency that modulates a higher frequency. PAC can be conceptualised as a 1:1 phase-phase              

coupling between the time series corresponding to low frequency and power of the higher              

frequency oscillator.  

 

Phase-Frequency coupling refers to correlation of the phase of one oscillator with the spectral              

content(frequency) of another oscillator. Next, we consider the various methods that are used to              

quantify phase amplitude coupling in electrophysiological data. 

 

 

https://paperpile.com/c/rRm4tM/RNEl
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2.1 Metrics and Pipelines to analyze phase amplitude coupling in 

neural data 

Several methods have been proposed for detecting phase amplitude coupling. For a            

comprehensive review refer Penny et.al.(Penny et al. 2008) 

The core of these detection methods is as under: 

1. Bandpass filter the signal in the appropriate frequency ranges to obtain a slow, fast 

frequency signal of interest. 

2. Estimate the phase of the slow oscillation using Hilbert transformations. 

3. Estimate the phase of the power of the faster oscillation by using Hilbert transformation. 

4. Relate the phase of the slow signal with the phase of the power of the fast signal. 

Below, we describe 3 popular methods for relating the phase of the slow signal with the phase                 

of the power of the fast signal. 

 

2.1.1 Phase Locking Value 

LV  | |P =  1
N ∑

N

n=1
e(i(ϕ [n] −ϕ [n] ))slow afast  

Where are the phase of the slower frequency, phase of the power of the fast [n], ϕ [n]ϕslow  afast                

frequency respectively at the time point. The averaging is performed in a given temporal    nth           

window of size N. PLV corresponds to the magnitude of the resultant vector obtained from the                

addition of the unit vectors . As such, the value of PLV lies between 0 and      e(i(ϕ [n] −ϕ [n] ))slow afast            

1(Cohen 2008)(Lachaux et al. 1999). 

https://paperpile.com/c/rRm4tM/DYIR
https://paperpile.com/c/rRm4tM/5p7n
https://paperpile.com/c/rRm4tM/7ySk
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2.1.2 Modulation Index 

[n] a [n]ez =  fast
(iϕ [n])slow

  

 | [n]|M =  1
N ∑

N

n=1
z  

The modulation index is the resultant vector obtained by adding the unit vectors corresponding              

to the product of the phase of the slow oscillations and the amplitude of the fast oscillation. MI                  

can take any positive value. As such, MI should be scaled using surrogate statistics(Penny et al.                

2008) 

 

2.1.3 Correlation 

 Corr (a [n], [n])r =  n slow afast  

Correlation metric corresponds to the linear correlation between the amplitudes of the slow and              

the fast oscillations. Since correlation is linear, the metric suffers from an inability at estimating               

fractional correlations, as would be the case if PAC occurs at quarter cycles(Penny et al. 2008). 

https://paperpile.com/c/rRm4tM/DYIR
https://paperpile.com/c/rRm4tM/DYIR
https://paperpile.com/c/rRm4tM/DYIR
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Fig.4 Schematic representation of signals a.)Phase of amplitude of fast oscillation b.)raw traceϕafast  

and amplitude of fast oscillation c.)raw trace of slow oscillation d.)phase of slow,xfast afast xslow  

oscillation  ϕslow  

2.2 Mathematical Models of Cross Frequency Coupling 

Mathematical modelling of neuronal dynamics can be performed using detailed or mass models.             

Detailed modelling involves modelling each and every cell in in the network, with separate              

equations for soma, dendrite and axons. Spiking neural networks are examples of detailed             

models.  

 

While this approach is more biophysically realistic, it suffers from certain drawbacks. Firstly,             

solving a high dimensional system of equations, such as those arising from detailed models, is               
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computationally expensive. Secondly, biological detailing leads to an explosion in model           

parameters which can lead to model overfitting. To circumvent these issues, we resort to the               

second approach, namely, mass modelling(Sotero 2015). Mass Modelling reduces the          

dimensionality of the system by assuming that neural population dynamics can be            

appropriately summarized using the average activity. Examples of mass models include the            

Wilson-Cowan oscillator and the Jansen Ritt(Sotero 2015). Mass models have been used to             

simulate seizures, cognitive phenomenon, anaesthetic action etc. Sotero et. al. (Sotero 2015)            

argues that NMMs are an appropriate mathematical framework to study PAC because of the              

small number of parameters and variables involved and the richness of the dynamics they can               

generate. 

 

Here we briefly review some of the models that have been proposed for phase amplitude               

coupling. Chehelcheraghi et. al. (Chehelcheraghi et al. 2017) studied phase amplitude coupling            

using a modified version of the Wendling neural mass model.Sotero et. al. (Sotero 2015) goes               

on to propose a detailed cortical column model comprising 4 layers and 14 neuronal populations               

to account for PAC. Onslow et. al.(Onslow, Jones, and Bogacz 2014) proposed a model for               

Phase Amplitude Coupling which is similar to the one considered here. Excitatory and Inhibitory              

neural populations are coupled to each other in a recurrent fashion and external current to the                

individual populations is sinusoidally modulated to perturb the system across a bifurcation point.  

 

 

https://paperpile.com/c/rRm4tM/28BH
https://paperpile.com/c/rRm4tM/28BH
https://paperpile.com/c/rRm4tM/28BH
https://paperpile.com/c/rRm4tM/zJjU
https://paperpile.com/c/rRm4tM/28BH
https://paperpile.com/c/rRm4tM/TMqT
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2.3 Model 
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As mentioned earlier, neural oscillations are produced when large number of           

neurons(ensembles) fire synchronously, leading to the generation of a macroscopic signal. The            

Wilson-Cowan model treats the summed activity of excitatory and inhibitory networks as the             

state variable that evolves in time, due to its intrinsic connectivity and external inputs(Destexhe              

and Sejnowski 2009). The WC model consists of an excitatory population connected to an              

inhibitory population in a recurrent fashion. The dynamics of the system is governed by a               

system of coupled differential equations(Cowan, Neuman, and van Drongelen 2016). The           

synaptic connections between the two populations, the intrinsic connectivity within the two            

populations and the constants within the rectification functions serve as the model parameters.  

 

 

Fig 5. Representation of Wilson Cowan Oscillator. E and I are excitatory and inhibitory 

populations respectively. P and Q are external inputs. Red dots indicate inhibitory connections. 

 

 (1 E)S (c E c I )  τ e dT
dE =  − E +  − re e 1 −  2 + P  

     (1 I)S (c E c I )τ i
dI
dT =  − I +  − ri i 3 −  4 + Q  

 

https://paperpile.com/c/rRm4tM/ySva
https://paperpile.com/c/rRm4tM/ySva
https://paperpile.com/c/rRm4tM/rqhi
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E and I are the averaged summed activities of the excitatory and inhibitory populations              

respectively. and represent sigmoidal functions. The argument of the sigmoidal functions is Se  Si           

the summation of excitatory/inhibitory populations and external inputs. , , and are the        c1  c2  c3  c4   

respective coupling constants. and are the external inputs to the population(Cowan,    P  Q         

Neuman, and van Drongelen 2016).  

 

https://paperpile.com/c/rRm4tM/rqhi
https://paperpile.com/c/rRm4tM/rqhi
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The aim of the study was to explore the possibility of obtaining regimes of phase amplitude                

coupling that are independent of any phase frequency modulations and likewise, regimes of             

phase frequency coupling that are independent of any phase amplitude modulations. While, one             

previous study has utilized a wilson-cowan oscillator model to explain PAC, it does so by forcing                

the oscillators around the bifurcation point of the system(Fig 7,Fig 8). Sinusoidal forcing along              

the critical points leads to robust oscillatory activity in specific phases of the external input but                

leads to a dampening of frequency(along with Amplitude) in other phases of the input. This               

should be considered as an instance of phase-amplitude-frequency modulation, where the           

phase of the low frequency not only modulates the amplitude, but also the spectral content of                

the higher frequency. Estimation methodologies that rely on bandpass filtering in order to             

decompose signals in appropriate frequency bands are apt to fail in detecting PAC where the               

higher frequency shows phasic broad spectrum modulations. To account for this, we performed             

bifurcation analysis to explore regimes where pure phase amplitude couplings could be            

obtained. Fig 7. shows the frequency-amplitude characteristic of the Wilson-Cowan Oscillator for            

a given value of parameters. The shaded areas correspond to regimes where the amplitude of               

oscillatory response changes significantly while there is relatively narrow band modulation in the             

frequency response. If the population is forced by external input in this regime, we expect               

phasic modulation of the power spectra of response with little change in the frequency              

response. Therefore, this regime corresponds to PAC between the input drive and population             

response. Next, we generated the population response time series along with the external input              

(Fig 9). An examination of Fig 8. reveals areas where there is little change in amplitude for                 

relatively broad spectrum changes in frequency. This would correspond to a phase frequency             

coupled regime . Interestingly, the PAC/PFC regimes occur at either sides of the region of hopf                

bifurcation, near the critical point. Any phasic modulation in the intervening area would lead to a                
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scenario reminiscent of phase-amplitude-frequency coupling as discussed in Onslow et.          

al.(Onslow, Jones, and Bogacz 2014). Next, we used 9 popular metrics from literature to              

quantify the extent of PAC present in the signal Fig 9. 7 of the 9 metrics were able to detect                    

PAC, while 2 methods Dupra La Tour et. al. and Tort et. al were unable to detect PAC(Dupre la                   

Tour et al. 2017)(Fig 10.).  

 

 

Fig 6. Nullclines for the Wilson Cowan model for 

6.0, c 2.0, c 15.0, c 2.0, r  1, r , a 1.3, 2.0, 4.0, 3.7 c1 = 1  2 = 1  3 =   4 =   E =   I = 1  E =  aI =  Ethr =  I thr =    

https://paperpile.com/c/rRm4tM/TMqT
https://paperpile.com/c/rRm4tM/t0vW
https://paperpile.com/c/rRm4tM/t0vW
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Fig 7. Amplitude and frequency plots as a function of varying the bifurcation parameter(P). Areas 

enclosed within black lines correspond to regions where there is appreciable change in amplitude 

without corresponding change in frequency. 

 

Fig 8. Amplitude and frequency plots as a function of varying the bifurcation parameter(P). Areas 

enclosed within black lines correspond to regions where there is appreciable change in frequency 

without corresponding change in amplitude. 
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Fig 9. Population Response showing phase amplitude coupling between the input(red) and 

response(blue) 

 

 

Fig 10. Estimating PAC for signal in Fig.9 by using 9 measures  
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4.1 Gating by inhibition 

According to a recent theory, cortical excitability is regulated by alpha oscillations. Alpha             

oscillations control the flow of information to task relevant areas by shutting down task irrelevant               

regions(Jensen and Mazaheri 2010). Several studies have demonstrated a robust increase in            

alpha power with memory load during the retention interval. According to GBI, alpha increases              

in magnitude in the posterior regions to shut down areas not involved in encoding the specific                

memory(Jensen and Mazaheri 2010). Similarly, it has been shown that alpha activity over             

visual areas increases in motor tasks and vice versa. The phasic modulation in alpha rhythms               

and therefore, cortical excitability is referred to as pulsed inhibition. The following figure explains              

how the alpha activity disengages a given region by means of ‘pulsed inhibition’.  

 

 

 

https://paperpile.com/c/rRm4tM/Hjby
https://paperpile.com/c/rRm4tM/Hjby
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Fig 11. A schematic to show pulsed inhibition between alpha(above) and gamma(below) signal. 

There is a reduction in the duty cycle of gamma oscillations as the amplitude asymmetry of alpha 

oscillations is increased . 

 

The upper trace represents an amplitude asymmetric input. An amplitude asymmetric signal is             

one where the mean of the signal is biased by its magnitude. This corresponds to a rhythmic                 

pulsing(Jensen and Mazaheri 2010). 

 

We explored the possibility of simulating the above scenario using the wilson cowan model. By               

forcing the system along the hopf bifurcation by an amplitude asymmetric signal yields a              

scenario similar to the above figure. As the amplitude of the external input increases, the               

effective ‘duty cycle’ of the population response(gamma) is suppressed, thus representing a            

https://paperpile.com/c/rRm4tM/Hjby
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pulsed inhibition. Notice, a relatively small phase shift between the peak input and population              

response.  

Through this we demonstrate that it is possible to simulate pulsed inhibition using the simple               

Wilson-Cowan model where the fast local activity(gamma) corresponds to the response of the             

neural population and the slow modulation(alpha) is provided by the external pulse. Moreover,             

we show that cross frequency interactions arise very naturally from simple oscillatory models             

involving just two neural populations. 

 

 

Fig 12. Pulsed Inhibition modelled using Wilson Cowan model 
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SUPPLEMENTARY MATERIAL 
 
All simulations were performed using python programming language(v. 2.7.14). PAC estimation           
was done by using the PAC tools library developed by Dupre la Tour et. al. (Dupre la Tour et al.                    
2017). Following is the code to obtain Fig 8. 
 
""" 
@author: Anagh Pathak 
""" 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.integrate import odeint 
from scipy import signal 
import multiprocessing as mp 
import time 
import random 
import pickle 
 
#Parameters  
c1 = 16.0  
c2 = 12.0  
c3 = 15.0  
c4 = 3.0 
 
# refractory periods 
rE = 1 
rI = 1 
''' Functions that define the sigmoids''' 
def sigmoid(x, a, thr): 
    return 1 / (1 + np.exp(-a * (x - thr))) 
 
def Se(x): 
    aE = 1.3 
    thrE = 4 
    return sigmoid(x, aE,thrE) - sigmoid(0, aE,thrE) 
 
def Si(x): 
    aI = 2 
    thrI = 3.7 

https://paperpile.com/c/rRm4tM/t0vW
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    return sigmoid(x,aI,thrI) - sigmoid(0, aI,thrI) 
 
''' Function that defines the external forcing''' 
def I_mod(t,A,freq): 
    return 1.185 + A*np.sin(freq*t)  
 
''' Wilson Cowan Solver''' 
def WilsonCowanStatic(y,t,P): 
    E = y[0] 
    I = y[1] 
    y1 = 0.1*(-E + (1.0 - rE * E) * Se(c1 * E - c2 * I + P )) 
    y2 = 0.1*(-I + (1.0 - rI * I) * Si(c3 * E - c4 * I )) 
    return [y1, y2] 
 
def odesolverWC(P): 
    t = np.arange(0,10000,0.01) 
  
    init = [random.random(),random.random()] 
    sol = odeint(WilsonCowanStatic,init,t,args = (P,)) 
    rep_sig = sol[:,0][30000:700000] 
    freq,power = signal.periodogram(rep_sig, 100000) 
    frq = freq[np.where(power == max(power))] 
    amp = max(rep_sig) - min(rep_sig) 
    return [amp,frq] 
 
# Write parallel code  
# Save data as pickle 
 
if __name__ == '__main__': 
  
    pool = mp.Pool() 
    PP = list(np.arange(0.8,4.0,0.01)) 
    results = pool.map(odesolverWC,PP) 
    with open('odesolve.pkl','wb') as f: 
        pickle.dump(results,f) 
 
#Open the pickled data 
import pickle 
import numpy as np 
import matplotlib.pyplot as plt 
 
with open('odesolve.pkl','rb') as f: 
    res = pickle.load(f) 
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PP = list(np.arange(0.8,4.0,0.01)) 
 
plt.subplot(211) 
plt.plot(PP[:],[i[0] for i in res]) 
plt.xlabel('P', fontsize = 20) 
plt.ylabel('Amplitude', fontsize = 30) 
plt.subplot(212) 
plt.plot(PP[:],[i[1] for i in res]) 
plt.xlabel('P', fontsize = 20) 
plt.ylabel('Frequency(Hz)', fontsize = 30) 
 
  
  
 
  
  
  
  
 
 
 
  
 


