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Chapter 1 

Introduction  

1.1  AI and Neuroscience – A symbiotic relationship  

From the earliest stages of human involvement in agriculture and the gradual 

development of civilizations, a discernible trend emerges—a distinct scientific 

accomplishment that has the power to redefine the path of each century and 

fundamentally reshape the trajectory of human civilization. This pattern 

underscores the transformative influence that pivotal scientific breakthroughs exert 

on the historical narrative and the evolution of our shared human existence 

(Diamond, 1997). In the past century, one can argue from a pure scientific 

standpoint, the Manhattan Project and the utilization of nuclear energy for defence, 

energy generation, and more, emerge as a defining scientific feat—one that 

unmistakably reshaped human evolution. In the current 21st century, it is 

increasingly apparent that, with recent advancements like the ChatGPT and DALL-

E, products of the organization OpenAI (https://openai.com/), artificial intelligence 

is poised to assume a defining role. Its potential to deeply penetrate every facet of 

human life is evident, suggesting its transformative influence on the entirety of 

human existence. But what precisely defines artificial intelligence or AI? In its 

essence, AI encompasses the realm of machines and softwares capable of 

executing tasks that traditionally necessitate human cognitive capabilities (Figure 

1.1A). Interestingly, upon closer examination, a thought-provoking parallel arises 

between AI and neuroscience, both converging toward a common focal point. At 
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the core of this convergence lies the endeavour to understand and replicate the 

intricacies of the human brain's functioning. Viewed through this lens, artificial 

intelligence emerges as a pioneering force in innovation, aiming to traverse the 

divide between human intelligence and artificial constructs (Winston, 1984). This 

aspiration finds harmony with the essence of neuroscience—a discipline dedicated 

to the understanding of the intricate networks within the human brain. Likewise, 

professionals in the domain of artificial intelligence undertake the task of crafting 

neural networks that exhibit a remarkable semblance, mirroring both the structural 

composition and organizational dynamics of the intricate human nervous system 

(Figure 1.1B). As artificial intelligence strives to replicate human thought patterns, 

it takes on the role of embodying the collective insights amassed from 

neuroscience's continuous efforts in cracking the brain-puzzle. 

A prominent application of artificial intelligence resides within the healthcare 

industry, notably in the realm of diagnostics (Ramesh , Khambhanpati , Monson , 

& Drew , 2004). Consider, for instance, the scenario of an adept clinical 

radiologist—an individual possessing specialized knowledge. When presented 

with an MRI scan of a patient, this radiologist can proficiently identify ailments like 

meningitis or ischemic blood clots from the imagery. Today, with the remarkable 

progress achieved in the field of AI, the possibility emerges to train a convolutional 

neural network (CNNs) based deep learning model. This model, through a process 

of assimilating the distinctive attributes inherent in MRI scans, is capable of 

replicating the precise diagnostic outcomes achieved by the skilled radiologist, 

thereby yielding a commendable level of accuracy. However, a crucial 

consideration comes to the fore. The potency and accuracy of a deep learning 

model are inherently contingent upon the parameters we define, as its learning 
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process is predicated solely upon the data or "features" provided. The model's 

precision stands in direct correlation with the calibre of these features, the inputs 

that shape its learning (Ramesh , Khambhanpati , Monson , & Drew , 2004). This 

becomes especially pertinent when applying deep learning or machine learning 

models to biological systems, such as comprehending the complexities of the 

human brain. In this context, it becomes imperative that these features, or perhaps 

more aptly put, computational biomarkers, are rooted in substantiated biological 

evidence. When these features are founded upon biological evidence, the 

predictions the model generates closely align with the outcomes manifested within 

the biological systems it seeks to emulate. 

 
Figure 1.1 Parallels between AI and Neuroscience. (A) A Venn diagram showing 
the relationship and interdependencies between artificial intelligence (AI), machine 
learning (ML) and deep learning (DL) (B) Parallels between brain circuitry 
(biological) and a neural network (adapted from Shimon Ullman. Science. 2019) 

 

Machine learning algorithms fall into two broader categories: supervised and 

unsupervised learning algorithms (Ray , 2019). The fundamental distinction 

between supervised and unsupervised learning lies in the requirement for labelled 

training data. Supervised machine learning algorithms rely on input and output data 

that have been appropriately labelled, whereas unsupervised learning algorithms 
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process unlabelled or raw data. In the realm of supervised machine learning, the 

model gains insights from the relationships embedded within the labelled input and 

output data. However, it's worth noting that creating labelled training data can 

frequently be resource-intensive. Conversely, unsupervised machine learning 

operates by extracting knowledge from unlabelled raw training data. An 

unsupervised or a data driven model delves into the intricacies of the unlabelled 

dataset, unveiling relationships and patterns that inherently reside within (Ray , 

2019). This approach is often harnessed to unearth latent trends present within a 

given dataset. In response to the challenge of identifying biological evidence-based 

features, certain initiatives within the field have embarked upon the utilization of 

supervised learning algorithms (For example: Neuroimaging markers for 

Alzheimer’s disease (Amini, Pedram , Moradi , Jamshidi , & Ouchani , 2021)). 

Nevertheless, it is imperative to recognize that this particular approach is not 

exempt from issues of its own. A particularly salient issue revolves around the 

potential introduction of bias during the analysis process, thereby posing a 

significant threat to the fidelity of the model's predictions (Viduarre, Smith, & 

Woolrich , 2017). This underscores the critical importance of exercising scrupulous 

deliberation and methodological precision when navigating the terrain where 

artificial intelligence intersects with intricate biological systems. 
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Figure 1.2 A cartoon flowchart of two ways of diagnosis: An expert radiologist 
and an AI model (ML or DL model). For AI modelling biological systems, it is 
imperative that the features, or perhaps computational biomarkers, are rooted in 
substantial biological evidence. (The figure is adapted and edited from Computer 
Science and Artificial Intelligence Lab. MIT – Mike Miliard 2023) 

 

1.2  Part I: Brain connectivity patterns – An entry point  

The human connectome comprises of functional and structural connectome. In part 

I, the thesis focuses on functional connectome where we explore data driven 

methodologies to investigate brain connectivity patterns, which presents a 

promising avenue for the identification of biological evidence-driven features. 

Within the domain of fMRI research, functional connectivity (FC) emerges as a 

promising approach for quantifying and characterising brain connectivity patterns 

(Preti, Bolton, & Van De Ville , 2017). Functional connectivity encompasses a 

statistical association forged between activity measurements procured from 

distinct brain regions. This statistical relationship is usually estimated through 

methodologies such as the pairwise Pearson correlation and gauges the extent of 

correlation within the Blood Oxygen Level Dependent (BOLD) time series from 
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distinct brain regions (Friston K. , Frith, Liddle, & Frackowiak, 1993). This metric 

sheds insights on the functional coupling and interconnectedness between 

proximal and distal brain regions, which play pivotal roles in the neural processing 

of resting state and tasks (Aertsen, Gerstein, Habib, & Palm, 1989) (Friston K. , 

Frith, Liddle, & Frackowiak, 1993). In traditional methodologies, functional 

connectivity has been computed by assessing brain connectivity patterns over the 

entire duration of the time series data. This involves the averaging of brain activity 

across time intervals. This approach is commonly referred to as Static Functional 

Connectivity (1.3 A). While studies conducted under this premise have yielded 

significant advancements in comprehending the broader properties of brain 

function, the resultant characterization inherently encapsulates an average 

representation across intricate spatio-temporal phenomena (Hutchison , et al., 

2013). In recent times, it has come to light that functional connectivity exhibits 

temporal fluctuations, indicating that assessments based on the assumption of 

stationarity throughout the entire scan might be overly simplistic, potentially failing 

to capture the comprehensive spectrum of resting-state and task activity (Preti, 

Bolton, & Van De Ville , 2017).  These spontaneous temporal fluctuations of FC 

which has been shown to contain relevant information is known as dynamic 

functional connectivity. Interpreting temporal fluctuations in FC metrics, such as 

correlations derived from fMRI time series, presents a nuanced challenge. This 

task is complicated by factors such as low signal-to-noise ratio (SNR), dynamic 

shifts in non-neural noise levels (arising from processes like cardiac and respiratory 

activities, as well as hardware instability), and fluctuations in both the mean and 

variance of the BOLD signal across time.  The most commonly used method to 

estimate dFC is using the sliding window framework (Figure 1.3B), which estimates 
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dFC by computing average FC over small windows of time, and subsequently 

sliding the window over the entire duration of the BOLD time series (Hutchison & 

et al, 2013). Although, the sliding window approach has been the most common, 

simple, and intuitive analysis strategy for estimating dFC (Kudela, Harezlak, & 

Lindquist, 2017) (Preti, Bolton, & Van De Ville , 2017), the method suffers from 

prominent drawbacks. Arbitrary choice of window length, inherent variation present 

in the estimate that can be confused with the empirical time-varying nature of FC, 

equal weighting of all observations within the window leading to spurious 

fluctuations being magnified – all add to the woes of sliding window based 

approach (Lindquist, Xu, Nebel, & Caffo, 2014) (Hindriks, et al., 2016) (Preti, 

Bolton, & Van De Ville , 2017). Over the years, many meaningful extensions have 

been suggested to improve sliding window approach. Independent component 

analysis (ICA) was used to decompose windowed BOLD time series (Kiviniemi, et 

al., 2011).  Several graph theoretical summary measures such as assortativity, 

modularity, efficiency offer promising avenues to extract information from dFC 

(Bullmore & Sporns, 2009). In addition, clustering algorithms such as K-means 

clustering (Damaraju, et al., 2014) (Allen E. , et al., 2014), hidden Markov models 

(HMM) (Vidaurre, Smith, & Woolrich, 2017), temporal ICA (TICA) (Yaesoubi, Miller, 

& Calhoun, 2015) allows to identify clustering-derived recurring connectivity 

patterns or dFC states. Several conceptual alternative strategies such as wavelet 

transform coherence (Chang & Glover, 2010), a time/frequency analysis strategy 

with an observation window for the frequency content of the time courses; and  

frame-wise analysis of the BOLD time series (Cabral, et al., 2017), which allows 

information to be retrieved from the observation of single frames and yield 
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temporally subsequent co-activation maps (Liu, Chang, & Duyn, 2013); have been 

suggested (see (Preti, Bolton, & Van De Ville , 2017) for a review). 

 

Figure 1.3 Overview of static FC and Dynamic FC estimation. (A) Static 
functional connectivity involves the averaging of brain activity across time intervals 
by calculating pearson correlation over the entire duration of the scan. There is one 
FC matrix for the entire duration of the scan (B) Sliding window approach to 
estimate dynamic FC involves computing average FC over small windows of time, 
and subsequently sliding the window over the entire duration of the BOLD time 
series. 

 

1.3  Functional connectome: dynamics and stability  

Despite the inherent limitations, dynamic functional connectivity (dFC) possesses 

the capability to capture the intricate fluctuations within FC metrics, thereby 

encapsulating meaningful insights on a fine-grained temporal scale (Hutchison , et 

al., 2013). Acknowledging these temporal variations is pivotal for comprehending 

intricate behavioural dynamics. However, it is essential to recognize that alongside 

these fluctuations, a stable representation of neural activity's information content, 

along with the corresponding stability of FC patterns over time, assumes a crucial 

role for survival (Li, Lu, & Yan, 2019). This stable representation forms the bedrock 

for effective cognitive and behavioural functioning. The quantification of temporal 
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stability within dynamic functional connectivity (dFC) patterns constitutes a pivotal 

endeavour in studies focused on the intricate interplay between resting-state and 

task-related brain dynamics (Li, Lu, & Yan, 2019). Viewed from the context of 

dynamical systems, there is strong evidence for the existence of stability patterns 

of FC (Deco, Jirsa, & Mcintosh, 2011). The resting-state functional connectivity that 

emerges attains optimal concordance with experimentally observed functional 

connectivity when brain networks function at a critical cusp of instability. This 

regime of near-critical conditions manifests in the emergence of resting-state 

BOLD networks featuring slow fluctuations (< 0.1 Hz), which is presented as 

structured noise fluctuations around a stable equilibrium characterized by low firing 

activity. This equilibrium state coexists with latent "ghost" multistable attractors 

(Deco & Jirsa, 2012). Recent work has further demonstrated that during 

spontaneous resting state activity the ghost attractors makes frequent excursion to 

functionally and behavioural relevant phase locking states in a low dimensional 

state space (Vohryzek, Deco, Cessac, Kringelbach, & Cabral, 2020).  Even in task, 

brain resides in a specific attractor state defined by a certain FC pattern according 

to the cognitive demands of the task (Fedorenko & Thompson-Schill, 2014) (Pillai 

& Jirsa, 2017). An overall increase in FC stability has been reported in the presence 

of the task (Gonzalez-Castillo & Bandettini, 2018).  Investigations pertaining to the 

stability of dynamic functional connectivity (dFC) in both resting-state and task-

oriented contexts can be broadly classified into two perspectives. The first 

perspective encompasses studies that condense brain activity into discrete states 

through the utilization of clustering techniques such as the K-means clustering 

algorithm (Allen E. , et al., 2014) (Cabral , et al., 2017) (Figure 1.4A) or the Hidden 

Markov model (Viduarre, Smith, & Woolrich , 2017) (Surampudi, et al., 2018) 
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(Figure 1.4B). Temporal stability of FC is then estimated by measuring the 

"switching rate" between these brain states. The switching rate, also known as 

flexibility, quantifies how quickly a specific node transitions between different brain 

states. Higher flexibility suggests more frequent transitions, which leads to reduced 

temporal stability (Long , Lu, & Liu, 2023). Nevertheless, it is essential to 

acknowledge that these investigations, which operate under the presumption of 

multiple discrete brain states, are constrained by inherent methodological 

limitations associated with the employed clustering algorithm and the predefined 

determination of the number of states (Rakthanmanon T. , Keogh, Lonardi, & Evans 

, 2011) (Allen E. , et al., 2014). Conversely, the second perspective entails studies 

that perceive the temporal dynamics of dynamic functional connectivity (dFC) not 

as discrete brain states but as an uninterrupted continuum. These investigations 

scrutinize the global and regional dynamics of dFC by quantifying variability and 

similarity. For instance, (Zhang , et al., 2016) explore temporal stability of dynamic 

FC by evaluating FC variability through Pearson correlation. Similarly, other 

researchers in the field view dynamic FC as a stochastic trajectory and examine its 

overall global and local dynamics by employing metrics like dFCSpeed 

(Arbabyazd, et al., 2020). However, it is worth noting that despite these 

endeavours, a data-driven approach to comprehensively characterize temporal 

dynamics, viewing dynamic FC as a continuum, remains at an early stage of 

development.  
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Figure 1.4 Brief Summary of Brain State Studies (A) (Cabral , et al., 2017)  
employ the K-means clustering technique to compress brain activity into discrete 
brain states. (B) (Vidaurre, Smith, & Woolrich, 2017) utilize Hidden Markov Model 
(HMM) clustering to achieve a similar compression of brain activity into discrete 
brain states. 
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Figure 1.5 Overview of temporal variability of brain networks. (Zhang , et al., 
2016) view the temporal dynamics of dynamic functional connectivity (dFC) as a 
continuous process, without segmenting it into discrete brain states and use 
pearson correlation to gauge the variability in temporal dynamics. 

 

1.4  Part II: Low field neuroimaging – Fresh perspectives  

Part II of the thesis is dedicated to the exploration of data-driven and machine/deep 

learning methodologies aimed at enhancing the image quality of magnetic 

resonance (MR) images acquired using low-field MRI systems. This study is part 

of an ongoing larger comprehensive international collaboration study funded by the 

Bill and Melinda Gates Foundation (BGMF) (Artificial Intelligence Methods for Low 

Field MRI Enhancement - INV-032788).  

Magnetic resonance imaging (MRI) has ushered in a revolutionary era in brain 

research by providing non-invasive, high-resolution neuroimaging capabilities 

coupled with versatile soft-tissue contrast. In the realm of non-invasive human 

anatomy evaluation and understanding of physiological processes, particularly in 
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the domain of brain assessment, MRI holds a preeminent position. It is an 

invaluable tool for unravelling the intricate intricacies of neurology (Fornito , 

Zalesky , & Breakspear, 2015). However, despite these achievements, the 

complete realization of MRI's clinical potential remains pending.  A significant 

impediment stems from the substantial size of MRI scanners and their intricate 

infrastructural requirements, which translate into formidable financial barriers for 

installation and operation. Consequently, this challenge restricts the widespread 

incorporation of MRI technology in regions with limited resources, notably in low- 

and middle-income countries (LMICs), where the burden of neurological disorders 

is particularly pronounced. 

The challenge at hand appears to be relatively straightforward: MRI scanners, 

especially high-quality ones like the 3T machine, come with a significant financial 

burden. The installation and setup costs of these machines can amount to a 

substantial sum, which poses difficulties for lower and middle-income countries like 

India. As an alternative, low-field MRI scanners have emerged as an option. These 

scanners utilize a significantly lower magnetic field strength, typically in the order 

of milliteslas (mT), which reduces the overall cost of the equipment. However, this 

approach comes with a trade-off: the diminished magnetic power results in lower 

quality MRI images. To put it in perspective, if we liken 3T MRI images to 720p 

resolution, low-field MRI images are akin to subpar 240p resolution. Herein lies the 

inquiry: Is it feasible to enhance the quality of MRI images utilizing existing deep 

learning models? Can software be harnessed to address this challenge? This is 

the precise undertaking we have embarked upon. This ambitious project is 

generously supported by the Bill and Melinda Gates Foundation, aiming to 

leverage cutting-edge deep learning techniques to ameliorate the image quality of 
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MRI scans acquired using low-field MRI scanners. Existing methodologies in the 

field of deep learning use the technique of Image Quality transfer. This technique 

achieves super-resolution of scans by acquiring knowledge from higher-resolution 

images and then applying it to enhance the quality of their lower-resolution 

counterparts. IQT has predominantly found application in synthesizing 1mm 

isotropic images from thicker-slice clinical scans acquired at 1.5T magnetic field 

strength (Iglesias , et al., 2021). Moreover, this technique has demonstrated its 

utility in generating submillimetre-resolution images from 3T scans, harnessing 

insights gleaned from ultra-high-field (7T) imaging (Quiyuan , et al., 2021). An 

alternative approach involves the pre-emptive removal of image artifacts to bolster 

robustness and efficiency. This method capitalizes on a data-driven, machine 

learning-based denoising technique known as "non-local means-based denoising." 

This technique operates by reducing noise within the MR image, consequently 

elevating the overall image quality. In the context of our ongoing project, we delve 

into the exploration of these two methodologies: Image quality transfer and the 

utilization of the non-local means algorithm. These techniques serve as our 

investigative tools to enhance the quality of hyperfine low-field images obtained in 

regions characterized by lower- and middle-income economies. 

 

1.5  Clinical Significance 

The convergence of artificial intelligence and neuroimaging analytics, 

encompassing both structural and functional connectivity analysis, holds immense 

potential in addressing a diverse spectrum of neuropathological disorders by 

serving as accurate diagnostic markers. Functional connectivity analytics, for 

instance, provide a promising avenue for the development of non-invasive tools 
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and markers to enable precise diagnoses of various brain disorders. This holds 

particular significance for common mental disorders such as schizophrenia, 

depression, attention-deficit-hyperactivity disorder, and autism, which exert 

significant societal impact and deeply affect patients and their caregivers. 

Pioneering studies such as (Wu , et al., 2023), (Zhang & et al, 2016) underscore 

the synergy between machine learning techniques and the assessment of brain 

connectivity stability, leading to the identification of patients experiencing cognitive 

motor dissociation (CMD). Other notable investigations like (Iglesias , et al., 2021) 

(Chengyuan , et al., 2021)delve into the utilization of deep learning models and 

structural connectivity markers to identify neuro-pathologies, including lesions and 

enhancements in T1-weighted (T1w) images. The potential for these connectivity-

based markers to also serve as predictive indicators for these disorders presents 

an intriguing avenue for future research (Chengyuan , et al., 2021). By collectively 

enhancing our comprehension of brain connectivity patterns, particularly markers 

derived from the functional connectome, and advancing the development of deep 

and machine learning tools, we can pave the way for early identification, diagnosis, 

and ongoing monitoring of a wide array of neuropathological disorders. This 

interdisciplinary approach holds the promise of significantly improving clinical 

outcomes and patient care.  

 

1.6 Summary and scope of the thesis 

Artificial Intelligence (AI), exemplified by advancements like ChatGPT and DALL-

E, represents a transformative force permeating various aspects of life. One 

prominent domain for AI's application is healthcare, especially in diagnostics. This 

thesis delves into the applications of AI in the human brain, encompassing both its 
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structural and functional connectome. The effectiveness of AI's predictions heavily 

relies on robust input features, particularly when dealing with intricate systems like 

the brain. In this context, it becomes crucial for these features to be firmly grounded 

in well-established biological evidence. When rooted in biological evidence, these 

features enable the model's predictions to closely align with observed outcomes 

within the biological systems it aims to replicate. Notably, in functional 

connectomics, brain connectivity patterns offer a promising avenue for identifying 

input features guided by biological evidence. Dynamic functional connectivity has 

emerged as a prominent tool for studying brain connectivity patterns, with recent 

emphasis on their temporal stability. Developing a data-driven methodology for 

studying brain connectivity patterns, free from data biases, holds paramount 

importance. In the realm of structural connectomics, the utilization of machine 

learning and deep learning models to enhance the image quality of low-field MRI 

scans carries significant importance, especially for lower and middle-income 

countries. These advancements have the potential to substantially improve image 

quality, thereby positively impacting medical diagnostics and research within these 

regions. The objectives of this thesis are as follows: 

(1) To accurately characterize the stability of whole-brain dynamic functional 

connectivity patterns in both task and rest states across a cross-sectional 

population spanning the human adult lifespan (18-88 years). This will be 

achieved by developing a novel data-driven approach. The goal is to identify 

contributors (sub-networks) that influence the temporal stability of dynamic 

functional connectivity within the resting human brain. Additionally, the study 

aims to explore how these sub-networks organize and evolve throughout 

the lifespan. 
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(2) To investigate the potential of whole-brain and sub-network level measures 

of dynamic functional connectivity as tools for characterizing common 

mental disorders, encompassing healthy individuals as well as those 

diagnosed with schizophrenia, bipolar disorder, and ADHD. Furthermore, 

the study seeks to comprehensively understand the disrupted brain network 

mechanisms associated with these disorders. This will be accomplished by 

combining community-based detection and dynamics-driven 

characterization of the functional connectome. 

(3) To customize and execute machine and deep learning-driven image quality 

transfer techniques, particularly employing methodologies such as SynthSR 

(Iglesias et al., 2021). The study's secondary objective involves adapting 

and implementing data-driven denoising algorithms, including the non-local 

means algorithm, on empirical hyperfine MR T1-weighted images. 

Additionally, the study aims to develop quality metrics capable of 

quantitatively evaluating the extent of image enhancement achieved 

through these adapted methodologies. 
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Chapter 2 
Temporal stability in resting 
state, movie watching and 
sensorimotor task across 
healthy ageing  
 

2.1 Introduction 

Aging is typically associated with substantial structural and functional modifications 

of the brain. Significant number of studies which have investigated age-related 

modifications in functional networks using static functional connectivity reveal, an 

overall increase in between-network connectivity and decrease in within network 

connectivity in older adults (Damoiseaux, et al., 2008) (Betzel, et al., 2014) (Cao, 

et al., 2014) (Chen, et al., 2021).  Recently, dynamic functional connectivity (dFC) 

has emerged as a major topic in the resting-state BOLD fMRI literature. In spite of 

inherent limitations (Preti, Bolton, & Van De Ville , 2017) , dFC captures the 

fluctuations in temporal scale of minutes which contain meaningful information 

(Hutchison & et al, 2013). While accounting for these fluctuations maybe important 

for understanding the itinerant nature of slow neuronal dynamics, stable 

representation of information of neural activity and corresponding stability of FC 

patterns over time is crucial for survival (Li, Lu, & Yan, 2019). Secondly, what are 

the key contributors that shapes stability of FC patterns in ongoing brain dynamics 

is a vital issue that needs resolution. 
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Recent evidence suggests FC stability increases with motor learning (Yu, Song, 

Huang, Song, & Liu, 2020), was significantly higher in patients with major 

depressive disorder (Demirtas, et al., 2016), decreases in patients of schizophrenia 

and their siblings (Guo, Zhao, Tao, Liu, & Palaniyappan, 2017). Previous studies 

exploring temporal dynamics of FC have tried to investigate the stability by 

calculating the correlation between FC matrices computed from successive 

temporal windows (Hansen, Battaglia, Spiegler, Deco, & Jirsa, 2015), 

characterizing variability of the functional connectivity profile of a given region 

across time (Zhang & et al, 2016)  (Guo, Zhao, Tao, Liu, & Palaniyappan, 2017), 

by estimating voxel level dFC maps using Kendall’s coefficient of concordance with 

time windows as raters (Li, Lu, & Yan, 2019), by estimating the standard deviation 

of global modularity averaged across all timepoints and all participants (Hilger, 

Fukushima, Sporns, & Fiebach, 2019). 

Further, studies have also explored modifications in temporal stability of functional 

architecture in resting state of healthy control and patients with psychiatric 

disorders, and different battery of tasks. Zhang and colleagues showed disorder 

specific (ADHD, schizophrenia, autism spectrum disorder) variability modifications 

in functional architecture of DMN, visual and subcortical regions of the brain (Zhang 

& et al, 2016). Increased functional stability in high-order visual regions during 

naturalistic movie watching task were identified (Li, Lu, & Yan, 2019), but these 

studies are limited to stability of FC of a given region.  

The temporal stability of functional architecture is shown to influence the 

relationship between resting state and task-related brain dynamics as well (Li, Lu, 

& Yan, 2019). Spontaneous brain activity during rest is not random and shows 

specific spatio-temporal organization in state space (Deco, Jirsa, & Mcintosh, 
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2011). (Deco & Jirsa, 2012) speculate the existence of a multistable attractor 

landscape that describes the dynamic repertoire of resting state. Brain resides in 

a specific attractor state defined by a certain FC pattern according to the cognitive 

demands of the task (Fedorenko & Thompson-Schill, 2014) (Pillai & Jirsa, 2017). 

An overall increase in FC stability has been reported in the presence of the task 

(Gonzalez-Castillo & Bandettini, 2018). Thus, we hypothesised, unsupervised dFC 

characterization will reveal task-specific dFC stability patterns that are local in time 

i.e., limited, abated spread of stability patterns, whereas for the resting state dFC 

patterns, these functional states are composed of non-local correlations in time, 

with more global, widespread stability patterns. Although previous studies have 

explored the association between dynamic functional connectivity and age 

(Viviano, Raz, Yuan, & Damoiseaux, 2017) (Chen, et al., 2017) (Xia, et al., 2018), 

how the stability of functional architecture modifies across lifespan ageing remains 

an open question. Further, the age-related changes in temporal stability across 

resting state networks needs to characterised.  

The aim of the present study is two-fold: 1) to precisely characterise the stability of 

whole-brain dFC patterns during task and rest for a cross-sectional population over 

human adult lifespan (18-88 years) using a novel unsupervised approach 2) to 

identify the contributors (sub-networks) to dFC temporal stability in in resting 

human brain and how they organize over lifespan.  This manuscript is organized 

as follows. First, we estimate BOLD phase coherence over time (Glerean E. , 

Salmi, Lahnakoski, Jääskeläinen, & Sams, 2012) which was used as a measure of 

dFC for rest and task. Next, we proceed with unsupervised characterization of dFC 

subspaces involved in task and rest. Subsequently, the temporal stability of dFC 

subspaces were computed using two different measures - angular separation and 
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the Mahalanobis distance (Mahalanobis, 1930) (Shen, Kim, & Wang, 2010). 

Finally, we analyse the temporal stability of dFC to draw critical insights about age 

associated differences to task and rest using a large human cohort (N= 645) of 

healthy ageing (Shafto, et al., 2014).  
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2.2  Methods 

2.2.1. Data sources and participants 

The data were collected as part of stage 2 of the Cambridge Centre for Ageing and 

Neuroscience (CamCAN) project (available at http://www.mrc-

cbu.cam.ac.uk/datasets/camcan) (Taylor, et al., 2017) (Shafto, et al., 2014). The 

CamCAN is a large-scale multimodal, cross-sectional, population-based study. 

The database includes raw and pre-processed structural magnetic resonance 

imaging (MRI), resting state and active tasks using functional MRI (fMRI) and 

Magnetoencephalogram (MEG), behavioural scores, demographic and 

neuropsychological data.  From 3000 participants of stage 1, a subset of 

approximately 700 participants who were cognitively healthy (MMSE score >25), 

with no past or current treatment for drug abuse or usage, met hearing threshold 

greater than 35 dB at 1000 Hz in both ears, had at least a corrected near vision of 

20/100 with both eyes and could speak English language (native English speaker 

or bilingual English from birth) were eligible for MRI scanning. They were home 

interviewed and recruited to stage 2. The study was in compliance with the Helsinki 

Declaration and was approved by the Cambridgeshire 2 Research Ethics 

Committee. The fMRI data from resting state and task periods (naturalistic movie 

watching and sensorimotor task) was used in the present study. 
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2.2.2 Data acquisition and experimental paradigm 

The fMRI data were collected at MRC Cognition and Brain Sciences Unit, on a 3T 

Siemens TIM Trio scanner with a 32-channel head coil, the head movement was 

restricted with the aid of memory foam cushions. For the tasks, the instructions and 

visual stimuli were back projected onto the screen, auditory stimuli were presented 

via MR-compatible Etymotics headphones and manual responses from the 

participants made with the right hand were recorded using an MR-compatible 

button box (Taylor, et al., 2017). The fMRI data for eyes-closed resting state and 

sensorimotor task were acquired using Echo-Planar Imaging (EPI) sequence, 

consisted of 261 volumes, each volume with 32 axial slices (slice thickness 3.7mm, 

interslice gap 20% for whole-brain coverage) acquired in descending order, TR 

1970 ms, TE 30 ms, voxel-size 3 mm 3 mm 4.44 mm, Flip angle 78 degrees, field-

of-view 192 mm X 192 mm, Bandwidth 2232 Hz/Px. The duration of both the scans 

was 8 min 40s. The fMRI data for the naturalistic movie watching task were 

acquired using multi-echo EPI sequence, consisting of 193 volumes of 32 axial 

slices each (slice thickness 3.7mm, interslice gap 20% for whole brain coverage) 

acquired in descending order, TR 2470 ms, TE [9,4,21.2,33,45,57] ms, voxel-size 

3 mm 3 mm 4.44 mm, Flip angle 78 degrees, field-of-view 192 mm X 192 mm, 

Bandwidth 2520 Hz/Px. The duration of the scan was 8 min 13s. A detailed 

description of data acquisition parameters can be found in (https://camcan-

archive.mrc-cbu.cam.ac.uk/dataaccess/) (Taylor, et al., 2017). 

The task-induced BOLD data from the naturalistic movie watching task was 

acquired from participants, who watched 8 minutes of narrative preserved, 

condensed, black and white version of Alfred Hitchcock’s television drama “Bang! 

You’re Dead”. The participants were not aware of the title of the movie but were 

https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
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instructed to pay attention to the movie. In the sensorimotor task, the trials 

consisted of a binaural tone simulation at either 300, 600, or 1200 Hz and bilateral 

black and white checkerboard. The participants were asked to button press with 

their right index finger if they hear or see any stimuli. More details about the task 

paradigm have been presented here (Shafto, et al., 2014) (Taylor, et al., 2017). 

 

2.2.3 Data pre-processing  

The fMRI data for each functional run (resting state, movie watching and 

sensorimotor task) were unwarped using field-map images, realigned to correct for 

motion and, slice-time corrected. EPI data were co-registered to the T1 image, 

transformed to MNI space using the warps and affine transformation from structural 

image (estimated using DARTEL). For region of interest (ROI) analysis, mean 

regional BOLD time series were estimated in 116 parcellated brain areas of 

Anatomical Automatic Labelling atlas (AAL) (Tzourio-Mazoyer, et al., 2002) 

(available at http://www.gin.cnrs.fr/tools/aal). Pre-processed data was provided by 

Cam-CAN research consortium.  Detailed overview of pre-processing pipeline can 

be found in (Taylor, et al., 2017). In order to capture the pattern of temporal stability 

over lifespan (e.g.: of the ‘Entropy’ metric), we divided the whole dataset of N=645 

participants into non-overlapping bins of 5 years starting from 18 years. On the 

other hand, to gather accurate insights in each stage of the adult lifespan, we 

divided the whole data of N=645 participants into three cohorts, young adults with 

an age range 18-40 years (50.27 % female; mean age=31.21±6.06 years), middle 

adults with an age range 41- 60 years (52.23% female; mean age = 50.49±5.70 

years), old adults with an age range 61-88 years (49.92 % female; mean age = 

http://www.gin.cnrs.fr/tools/aal
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73.72±7.20 years)..Each participant’s BOLD time series in the resting state, 

naturalistic movie watching and sensorimotor tasks were extracted.  

 

Figure 2.1 Brief overview of the unsupervised approach (A) The schematic 
diagram shows how the temporal stability of dynamic functional connectivity 
subspaces (dFC) are computed. Dominant dFC subspace, at each time point, is 
estimated using the first three principal components of dFC(t), that was computed 
using the measure of BOLD phase coherence. The similarity between dFC 
subspaces is calculated using Angular distance (principal angle) and Mahalanobis 
distance (Euclidean distance). If the dominant dFC subspaces are similar for 
extended timepoints, then they are considered to be stable. (B)  A flowchart 
representation of the method (C) Matrix representation of dFC patterns (dFC(t)) 
and reduced Dominant dFC patterns (D(t)) at t=40. 
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2.2.4 Data analysis  

2.2.4.1 Characterization of dynamic functional connectivity  

Time-resolved dynamic functional connectivity (dFC) was estimated, for each 

individual, using BOLD phase coherence (Figure 2.1A) (Glerean E. , Salmi, 

Lahnakoski, Jääskeläinen, & Sams, 2012) (Ponce-Alvarez, et al., 2015) (Deco & 

Kringelbach, 2016) (Cabral, et al., 2017), which resulted in a matrix with size 

NxNxT, where N=116 is the number of brain regions defined by AAL atlas, T is the 

total number of time points (T=261 for resting state and Sensorimotor task, T=193 

for naturalistic movie watching task). We chose BOLD phase coherence instead of 

computing correlation over a sliding window to calculate dFC, because BOLD 

phase coherence is an instantaneous measure with maximum temporal resolution 

(Glerean E. , Salmi, Lahnakoski, Jääskeläinen, & Sams, 2012). BOLD phase 

coherence does not require time-windowed averaging, that generates biased 

estimates if the window length is short and reduces temporal resolution if the 

window length is longer (Glerean E. , Salmi, Lahnakoski, Jääskeläinen, & Sams, 

2012). 

First, the instantaneous phases 𝜃𝜃(𝑛𝑛, 𝑡𝑡)  of the BOLD time series for all the brain 

regions,𝑛𝑛, was computed using Hilbert transform. The real-valued modulated 

BOLD signal 𝑠𝑠(𝑡𝑡) is expressed as an analytical signal in the complex plane as: 

𝑧𝑧(𝑡𝑡) = 𝑧𝑧𝑟𝑟(𝑡𝑡) + 𝑗𝑗𝑧𝑧𝑖𝑖(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) + 𝑗𝑗 𝐻𝐻𝐻𝐻[𝑠𝑠(𝑡𝑡)]                                                                   (2.1) 

 

Where, (HT [*]) represents the Hilbert transform. The instantaneous phase 𝜃𝜃 (𝑡𝑡) is 

computed as follows: 

𝜃𝜃(𝑡𝑡) =  ∠𝑧𝑧(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧𝑖𝑖(𝑡𝑡)
𝑧𝑧𝑟𝑟(𝑡𝑡) 

= arctan 𝐻𝐻𝐻𝐻 [𝑠𝑠(𝑡𝑡)]
𝑠𝑠(𝑡𝑡)

                                                          (2.2) 
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Given the phases of the BOLD time series, phase coherence i.e.,  𝑑𝑑𝑑𝑑𝑑𝑑 (𝑛𝑛,𝑝𝑝, 𝑡𝑡) for 

brain regions, 𝑛𝑛 and 𝑝𝑝 at time 𝑡𝑡 is computed as: 

                   𝑑𝑑𝑑𝑑𝑑𝑑 (𝑛𝑛,𝑝𝑝, 𝑡𝑡) = cos (𝜃𝜃(𝑛𝑛, 𝑡𝑡) − 𝜃𝜃(𝑝𝑝, 𝑡𝑡))                                                       (2.3) 

 

when, the phases of BOLD signals, 𝜃𝜃(𝑛𝑛, 𝑡𝑡) , 𝜃𝜃(𝑝𝑝, 𝑡𝑡) of the brain regions 𝑛𝑛,𝑝𝑝 are 

synchronized, 𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛, 𝑝𝑝, 𝑡𝑡) (ranges from -1 to 1) is close 1, when the phases from 

the BOLD signals of brain regions 𝑛𝑛,𝑝𝑝  are orthogonal 𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛, 𝑝𝑝, 𝑡𝑡) is close to 0. 

Since the phases are undirected, 𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛,𝑝𝑝, 𝑡𝑡) is symmetric along the diagonal. 

In addition to this, to check for reliability, we compute dFC using a sliding-window 

approach (Hutchison & et al, 2013) with non-overlapping, gaussian windows, 

varying the window length (10, 20, 30 time points) (Supplementary information – 

(A 2.1, A 2.2., A 2.3). 

 

2.2.4.2 Extracting Dominant dynamic functional connectivity  

Principal component analysis (PCA) was applied to participant-wise 

𝑑𝑑𝑑𝑑𝑑𝑑 (𝑛𝑛,𝑝𝑝, 𝑡𝑡) matrix of size 𝑁𝑁𝑁𝑁𝑁𝑁  representing the FC between 𝑛𝑛th and 𝑝𝑝th brain 

area for each time point. PCA is an unsupervised, multivariate dimension reduction 

method that decomposes the data into a set of orthogonal principal components or 

leading eigenvectors sorted by their contribution to the overall variance (Friston, 

1993). Thus, 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑛𝑛,𝑝𝑝, 𝑡𝑡) or simply 𝒅𝒅𝒅𝒅𝒅𝒅𝑡𝑡 can be expressed as  

  𝒅𝒅𝒅𝒅𝒅𝒅𝑡𝑡 = 𝑽𝑽𝑇𝑇𝑺𝑺𝑺𝑺                                                                                   (2.4) 

 where, matrix  𝑽𝑽 of size  𝑁𝑁𝑁𝑁𝑁𝑁 are set of eigenvectors, with each column of 𝑽𝑽 of 

size 1𝑋𝑋𝑋𝑋 representing orthogonal principal component, and 𝑺𝑺 the diagonal matrix 

�
𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝑁𝑁

�, such that  𝜆𝜆1 > 𝜆𝜆2 … . >  𝜆𝜆𝑁𝑁  
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If 𝑘𝑘 is the number of principal components chosen to represent 𝒅𝒅𝒅𝒅𝒅𝒅, the 

corresponding subspace 𝑫𝑫(𝒏𝒏,𝒌𝒌, 𝒕𝒕) or 𝑫𝑫𝒕𝒕, representative of dominant dFC pattern, 

can be expressed as  

𝑫𝑫 = 𝑽𝑽�𝑻𝑻𝑺𝑺�𝑽𝑽�                                                                                         (2.5) 

where, 𝑽𝑽�𝑻𝑻 is a dimensionally reduced matrix of size 𝑁𝑁 𝑋𝑋 𝑘𝑘, 𝑺𝑺�  is a diagonal matrix  

�
𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝑘𝑘

� . In this study, we chose k = 3 because for all participants at least 

99% variance in 𝒅𝒅𝒅𝒅𝒅𝒅 matrix is captured by the 3 leading eigenvectors (S 4). The 

dimension of 𝒅𝒅𝒅𝒅𝒅𝒅(𝒏𝒏,𝒑𝒑, 𝒕𝒕) has been reduced to 𝑫𝑫(𝒏𝒏,𝒌𝒌, 𝒕𝒕). Since, the dFC(t) 

matrices are symmetrical, several studies compare only the upper triangular 

elements (Cabral, et al., 2017). In our study, we use an alternative method, where 

we consider the first three leading eigen vectors, forming a reduced three-

dimensional dominant dFC subspace (D(t)) of each dFC (t). Compared to 

considering all (upper triangular) the elements of dFC(t), this method reduces the 

dimensionality of the of the data while still explaining almost 99% of the variance 

(A 2.4). This method of estimating dFC(t) also bypasses the use of sliding window 

approach to estimate dFC. 

 

2.2.4.3 Computation of stability of dynamic functional architecture 

We seek to characterize the temporal stability of the dominant subspace 𝐷𝐷(𝑛𝑛,𝑝𝑝, 𝑡𝑡) 

(or referred to as simply 𝑫𝑫𝑡𝑡) by estimating how similar they are across time 𝑡𝑡. To 

estimate the similarity between dominant dFC configurations, we introduce two 

types of distance measures successive dFC subspaces, 1) angular distance 2) 

Normalised Euclidean distance (Figure 2.1B). We define angular distance as the 
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principal angle between the dFC subspaces from different time points, given by the 

following equation: 

 𝜙𝜙�𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦� =  ∠(𝑫𝑫𝑡𝑡𝑥𝑥 ,𝑫𝑫𝑡𝑡𝑦𝑦)                                                                                          (2.6) 

 

Where, each entry in the time X time temporal stability matrix, 𝜙𝜙�𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦� is the 

principal angle between the two N X k dimensional subspaces at 𝑡𝑡𝑥𝑥 and 𝑡𝑡𝑦𝑦  

(Banerjee A. , Pillai, Sperling, Smith, & Horwitz, 2012) ( Björck & Golub, 1973). The 

principal angle ranges between 0 (low angular distance) to π/2 (high angular 

distance).  

For each individual, we calculate the angular distance between dominant dFC 

subspaces at 𝑡𝑡𝑥𝑥 and 𝑡𝑡𝑦𝑦, by estimating the principal angle between them. The low 

principal angle between dominant dFC subspaces means that their dFC 

configurations are very similar. On the contrary, the high principal angle between 

dominant dFC subspaces means that their dFC configurations are dissimilar.  

We define the normalised Euclidean distance between dominant dFC subspaces 

by the Mahalanobis distance. Mahalanobis distance measures the distance 

between points in space 1 from space 2 with the following equation: 

                 𝑀𝑀2 = �𝑫𝑫𝑡𝑡𝑥𝑥 − 𝑫𝑫𝑡𝑡𝑦𝑦�
𝑇𝑇
𝐶𝐶−1(𝑫𝑫𝑡𝑡𝑥𝑥 − 𝑫𝑫𝑡𝑡𝑦𝑦)                                                       (2.7) 

where 𝑀𝑀2 is the distance between each entry of 𝑫𝑫𝑡𝑡𝑥𝑥and 𝑫𝑫𝑡𝑡𝑦𝑦. For each timepoint, 

Mahalanobis distance was calculated between each ROI in the reduced dominant 

dFC subspace 𝑫𝑫𝑡𝑡𝑦𝑦and whole-brain subspace 𝑫𝑫𝑡𝑡𝑥𝑥. Every ROI in 𝑫𝑫𝑡𝑡𝑦𝑦 (point P) has 

Mahalanobis distance estimated with respect to subspace 𝑫𝑫𝑡𝑡𝑥𝑥 (distribution D). 

Subsequently, for each individual, we estimate the time X time temporal stability 
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matrix, where each entry is the Mahalanobis distance (𝑀𝑀 ranges between 0.5 to 

2.5), averaged across all brain parcels. Low 𝑀𝑀 means that dominant dFC 

subspaces are similar, high 𝑀𝑀 means that the dFC subspaces are 

dissimilar. Figure 2.1C illustrates the Matrix representation of dFC patterns 

(dFC(t)) and reduced Dominant dFC patterns (D(t)). 

 

2.2.1.1.Quantifying complexity of temporal stability matrices 

Entropy: 

To evaluate the informational content of temporal stability matrices we evaluated 

the entropy, for all three categories, rest, movie viewing and sensorimotor task in 

young and old adults. Entropy is defined by the following equation: 

                       E = −∑𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝)                                                                             (2.8) 

where 𝑝𝑝 contain the normalised histogram counts returned from ‘imhist.m’.  

‘imhist.m’ calculates the histogram of temporal stability matrices, estimated using 

reduced 𝐃𝐃txand 𝐃𝐃ty, and returns histogram counts. We calculate entropy of 

temporal stability matrices, where each entry is angular distance or Mahalanobis 

distance estimated between reduced 𝑫𝑫𝑡𝑡𝑥𝑥and 𝑫𝑫𝑡𝑡𝑦𝑦, for each subject and condition. 

In our formulation, Entropy provides us a measure of distinguishable temporal 

order that can be interpreted as overall stability of the temporal stability matrices. 

 

Frobenius norm: 

Frobenius norm was used to measure the differences between the temporal 

stability matrices computed for rest and the task conditions. Frobenius norm, also 

called the Euclidean norm of a matrix, is defined as the square root of the sum of 
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the absolute squares of its elements. Here, we calculate Frobenius norm between 

temporal stability matrices with the following equation: 

�|𝑥𝑥𝐹𝐹|� =  �∑ ∑ |𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑏𝑏𝑖𝑖𝑖𝑖|2𝑇𝑇
𝑗𝑗=1

𝑇𝑇
𝑖𝑖=1                                                                               (2.9) 

where 𝑎𝑎𝑖𝑖𝑖𝑖 and 𝑏𝑏𝑖𝑖𝑖𝑖 are the entries in the temporal dynamic matrices of rest and any 

of the task conditions respectively (movie watching or sensorimotor). 𝑥𝑥𝐹𝐹 is also 

computed between the two tasks. 

Stochastic characterization of 𝑑𝑑𝑑𝑑𝑑𝑑 

The temporal variation of two measures, principal angle and Mahalanobis distance 

between the dominant 𝑑𝑑𝑑𝑑𝑑𝑑 subspaces essentially capture the degree of temporal 

variation in functional network. Principal angular values close to 𝜋𝜋
2
 or high 

Mahalanobis distance at a specific time point reflects the reorganization of the 

functional state itself, whereas angular values closer to zero or low Mahalanobis 

distance indicates minor deviation from previous time. To understand the 

underlying stochastic characteristics of these measures, we use auto-regressive 

(AR) models where present values of  𝜙𝜙(𝑡𝑡)  and 𝑀𝑀(𝑡𝑡) are modelled as a linear 

weighted sum of values from past 𝜙𝜙(𝑡𝑡 − 1),𝜙𝜙(𝑡𝑡 − 2) …𝜙𝜙(𝑡𝑡 − 𝑖𝑖)/𝑀𝑀(𝑡𝑡 − 1),𝑀𝑀(𝑡𝑡 −

2) …𝑀𝑀(𝑡𝑡 − 𝑖𝑖).The   AR (𝜌𝜌)  process, 𝑋𝑋𝑡𝑡 (𝜙𝜙(𝑡𝑡) or 𝑀𝑀(𝑡𝑡)) is given by the following 

equation: 

     𝑋𝑋𝑡𝑡 = 𝑐𝑐 + ∑ 𝜑𝜑𝑖𝑖𝑋𝑋𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡
𝜌𝜌
𝑖𝑖=1                                                                                  (2.10) 

where  𝜑𝜑1 … … … …𝜑𝜑𝜌𝜌 are parameters of the model, 𝑐𝑐 is a constant, 𝜀𝜀𝑡𝑡 is white noise 

and 𝜌𝜌 is the lag term or model order. The simplest AR process is AR (0) is 

essentially a white noise process. In AR (1), the current value is dependant only 
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on its immediately preceding value, and hence captures a Markovian process.  

Optimal model of an AR process can be computed using the Akaike information 

criterion (AIC) which is expressed as 

    𝐴𝐴𝐴𝐴𝐴𝐴(𝜌𝜌) =  −2𝐿𝐿 + 2𝜌𝜌                                                                                         (2.11) 

where 𝐿𝐿 is the likelihood function computed by summing up over the mean squared 

error for an AR model of order 𝜌𝜌 (Wagenmaker & Farrell, 2004) (H.Akaike, 

1974).Optimal model order can be selected at a value of 𝜌𝜌 where AIC is minimum. 

We varied the model order (𝜌𝜌) from 0 to 100 and use the first minimal AIC value to 

select the best AR (𝜌𝜌), model. If the model order is found to be greater than 1, the 

underlying process is considered non-Markovian. 

2.2.5 Data/Code availability statement 

The datasets generated during the analysis pipelines in the present study are 

available from the corresponding author on reasonable request. The codes for all 

the analysis carried out in this paper is available on https://bitbucket.org/cbdl/ 

workspace/projects/DFC 

2.2.6 Ethics statement 

CamCAN dataset was collected in compliance with the Helsinki Declaration, and 

has been approved by the local ethics committee, Cambridgeshire 2 Research 

Ethics Committee (reference: 10/H0308/50) 

  

https://bitbucket.org/cbdl/%20workspace/projects/DFC
https://bitbucket.org/cbdl/%20workspace/projects/DFC
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2.3. Results 

2.3.1. Dynamic functional connectivity (dFC) patterns during rest, continuous 

naturalistic movie watching, and discrete sensorimotor task. 

We computed the 𝑑𝑑𝑑𝑑𝑑𝑑 from parcellated BOLD time series of resting state, 

naturalistic movie watching task where the participants watched and listened to an 

excerpt from Alfred Hitchcock’s “Bang! You’re Dead”, and a sensorimotor task 

where participants responded by a button press to either a visual or an auditory 

stimulus from the Cam-CAN dataset (details in Methods). Figure 2.2A represents 

dFC obtained using BOLD phase coherence connectivity in resting state. To 

capture the pattern of temporal stability over lifespan we divided the whole dataset 

of N=645 subjects into non-overlapping bins of 5 years starting from 18 to 88 years. 

Subsequently, to gather insights at each stage of adult lifespan we have divided 

the total N=645 subjects into three age groups -Young, Middle and Old with 

sufficient number of participants (> 180) in each category. We report the results of 

the analysis on young adults (age range 18-40) in this section. 

Dominant dFC subspaces were obtained by applying the unsupervised approach 

of Principal Component Analysis (PCA) to BOLD time series at each time point, 

and then reconstructing either the task or rest as the dynamics of a reduced 

dimensional dFC subspace. To demonstrate, that the unsupervised 

characterization of dFC patterns indeed capture the functional brain network 

organization, we computed the differences between the temporal stability matrices 

of rest and the two task conditions; first using the measure of principal angle (Figure 

2.2) and second using the measure of Mahalanobis distance (Figure 2.3). 

Thereafter, other measures of complexity and temporal variability were tested. 
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Figure 2.2: Using angular distance to characterise temporal stability matrices 
across age (A) dFC matrices estimated using BOLD phase coherence. (B) Time 
X Time temporal stability matrix of resting state, naturalistic movie watching task 
and discrete, sensorimotor task for young, middle and old adults. Each entry in the 
matrix is the principal angle 𝜙𝜙(𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦) between dominant dFC subspaces at 𝑡𝑡𝑥𝑥 and 
𝑡𝑡𝑦𝑦. The principal angle ranges between 0 (low angular distance) to π/2 (high 
angular distance). Resting state, in young, middle and old adults, has shorter-lived, 
global spread of patterns of temporal stability. On the contrary, both the tasks have 
a longer-lived, local spread of patterns of stability (indicated by arrows and 
rectangular boxes).  
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Figure 2.3: Using Mahalanobis distance to characterise temporal stability 
matrices across age. (A) Time X Time temporal stability matrix of resting state, 
naturalistic movie watching task, and sensorimotor task for young, middle and old 
adults, where each entry in the matrix is Mahalanobis �𝑀𝑀2�𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦�� distance 
between the dominant dFC subspaces. Mahalanobis distance between dominant 
dFC subspaces is low when the dFC configurations are similar. (B) The profile of 
temporal stability estimated with Mahalanobis distance between dominant dFC 
subspaces at t=15 and t=150, t=50, t=200 across the brain regions.  
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2.3.1.1. Using angular distance to characterize temporal stability matrices 

First, we calculate the principal angles among the dominant 𝑑𝑑𝑑𝑑𝑑𝑑 subspaces 

generated across all time points. This resulted in time X time temporal stability 

matrix, averaged across all subjects, where each entry in the matrix is the angle 

between dominant  𝑑𝑑𝑑𝑑𝑑𝑑 subspaces at 𝑡𝑡𝑥𝑥 and 𝑡𝑡𝑦𝑦, as shown in Figure 2.2 B. We 

consider a dominant  𝑑𝑑𝑑𝑑𝑑𝑑 configuration to be stable if the subsequent subspaces 

are similar in configuration, i.e., less “angular distant” for extended duration of time 

points. Results shown in Figure 2.2 B indicate that the resting state has a global 

spread of shorter-lived, repeated patterns of stability than both tasks. On the 

contrary, both the task cohorts, passive movie watching, and sensorimotor task, 

showed a local spread of, longer-lived stability patterns suggesting that local 

temporal stability of functionally connected networks are higher in the task than in 

resting state. To quantify these observations, we calculate the entropy of temporal 

stability matrices of resting state, movie watching task and sensorimotor task. The 

plots in Figure 2.4A, which represent entropy of temporal stability matrices of three 

categories of rest and task across lifespan, overall, report resting state to have the 

highest entropy, followed by movie watching task and sensorimotor task. We also 

calculate entropy of temporal stability matrices of young, middle and old age 

categories across resting state and both task cohorts (see A 2.5). Wilcoxon sign 

rank test revealed significant differences in entropy of temporal dynamic matrices 

of rest and task cohorts (details reported in supplementary material). Further, to 

analyse how similar temporal stability matrices across rest and tasks are, we 

calculate the Frobenius norm as shown in Figure 2.4C. The results reveal a shorter 

Frobenius norm between the temporal dynamic matrices of the resting state and 

movie watching task, than the resting state and sensorimotor task.  
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Figure 2.4: Quantifying complexity of temporal stability matrices across age (A) 
Plots representing entropy of temporal stability matrices of resting state (rest), naturalistic 
movie watching task (movie) and sensorimotor task (SMT) across lifespan, for Angular 
distance and Mahalanobis distance metric. The subjects were divided into non-overlapping 
bins of 5 years starting from 18 years to 88 years (18-20, 21-25, 26-30, 31-35, 36-40, 41-
45, 46-50, 51-55, 56-60, 61-65, 66-70, 71-75, 76-80, 81-88).  (B) Plots representing 
entropy of temporal stability matrices of resting state (rest), naturalistic movie watching 
task (movie) and sensorimotor task (SMT) for young (cyan), middle (blue) and old (pink) 
adults, for Angular distance and Mahalanobis distance metric.  Statistically significant 
differences (uncorrected) are indicated using * (𝒫𝒫 ≤ 0.05), ** (𝒫𝒫 ≤ 0.01), *** (𝒫𝒫 ≤ 0.01), 
*** (𝒫𝒫 ≤ 0.001), **** (𝒫𝒫 ≤ 0.0001), ns (not significant). (C)  Plots representing distribution 
of Frobenius distance between temporal stability matrices of resting state, naturalistic 
movie watching (yellow) and resting state, sensorimotor task (purple) for Angular distance, 
and Mahalanobis distance metric, in young, middle and old adults. The violin plots reveal 
a shorter Frobenius norm between resting state and movie watching task than resting state 
and sensorimotor task in all young, middle and old adults. 
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2.3.1.2. Using Mahalanobis distance to characterize temporal stability matrices 

Alternatively, we evaluate the temporal stability of  𝑑𝑑𝑑𝑑𝑑𝑑, by estimating Mahalanobis 

distance, that resulted in a time X time temporal stability matrix. Each entry of this 

matrix is the Mahalanobis distance between dominant dFC subspaces. Results, as 

shown in Figure 2.3A and Figure 2.3B, reveal global, shorter-lived repeated 

patterns of temporal stability in resting state and local, longer-lived temporal 

stability patterns in both the tasks. The entropy results across lifespan (Figure 

2.4A) reveal an overall high entropy in the resting state, followed by movie watching 

task and sensorimotor task. We repeat the Frobenius norm analysis, which 

produced similar results as the angular distance metric, as shown in Figure 2.4C. 

2.3.2. Unsupervised characterization of  𝑑𝑑𝑑𝑑𝑑𝑑 across healthy lifespan ageing  

Next, we have included three age cohorts, young, middle and old adults from the 

Cam-CAN dataset and carried out unsupervised characterisation of dFC using 

participant’s resting state, movie watching, and sensorimotor task data to identify 

age associated alterations in temporal stability of dominant 𝑑𝑑𝑑𝑑𝑑𝑑 subspaces. 

2.3.2.1. Using angular distance to quantify temporal stability differences in dFC 

across healthy ageing 

The time X time temporal stability matrix was computed for the middle (age range 

41-60 years) and older cohort (age range 61-88 years) and compared with that of 

younger cohort computed in the section 3.1. A global spread of shorter duration of 

temporal stability patterns was observed in resting state and local spread of longer 

duration temporal stability patterns was observed in the task, in all young, middle 

and old adults (see Figure 2.2 B). Further, entropy analysis revealed (see Figure 

2.4B), in movie watching and sensorimotor task, a peak entropy in older adults, 
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followed by middle and young adults. Whereas in resting state, we observed peak 

entropy in middle adults, followed by older adults and their younger counterparts. 

The distributions were non-parametric (normality check was done with Jarque-

Bera test and D’Agostino-Pearson omnibus test), Wilcoxon rank sum test revealed 

significant differences in entropy values between young and middle adults 

(p=0.0073), middle and old adults (p=0.0017) and, young and old adults (p=2.24e-

08) in movie watching task and young and old adults (p=0.0019) in sensorimotor 

task. The Frobenius norm analysis as shown in (Figure 2.4C) also revealed a 

similar trend in young and old adults i.e., shorter Frobenius norm between resting 

state and movie watching task than resting state and sensorimotor task  

2.3.2.2. Using Mahalanobis distance to quantify temporal stability of dFC across 

healthy ageing 

Mahalanobis distance between dominant dFC subspaces showed patterns similar 

to principal angle in young, middle and elderly. Further, we calculate entropy as 

shown in Figure 2.4B, of temporal stability matrices of each age category, in both 

rest and task conditions. The results indicate peak entropy in older adults, followed 

by middle and young adults in movie watching and sensorimotor task and, peak 

entropy in middle adults, followed by old and young adults in resting state, a similar 

trend as the angular distance metric. The distributions were non-parametric 

(normality check was done with Jarque-Bera test and D’Agostino-Pearson 

omnibus test). Wilcoxon rank sum test revealed statistical significance between 

the entropy of temporal stability matrices of young and middle adults (p=0.0176), 

young and older adults (p=0.0063) in movie watching task. Frobenius norm 

analysis as shown in Figure 2.4C revealed a shorter Frobenius norm between 

resting state and movie watching task than resting state and sensorimotor task. 
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Figure 2.5: Age related changes in temporal stability of dynamic functional 
connectivity of whole-brain resting state (A), sensorimotor network (B), central 
executive network (C) and Visual network (D) estimated with angular distance 
metric. Only those networks with significant modifications in temporal stability with 
age are shown. Statistically significant differences (uncorrected) are indicated 
using * (𝒫𝒫 ≤ 0.05), ** (𝒫𝒫 ≤ 0.01), *** (𝒫𝒫 ≤ 0.01), *** (𝒫𝒫 ≤ 0.001), **** (𝒫𝒫 ≤
0.0001), ns (not significant). 
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Figure 2.6: Spatial profile of Mahalanobis distance across resting state 
networks (A) Short-range temporal stability - Mahalanobis distance between 
dominant dFC subspaces of Default mode network (DMN), Central executive 
network (CEN), Sensorimotor network (SM), Salience, and Visual brain networks 
at t=15 and t=20. (B)  Long-range temporal stability - Mahalanobis distance 
between dominant dFC subspaces of Default mode network (DMN), Central 
executive network (CEN), Sensorimotor network (SM), Salience, and Visual brain 
networks at t=15 and t=150. 
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2.3.3. Age related changes in temporal stability of dFC in resting state brain 

networks  

 Next, we apply our unsupervised approach of Principal Component Analysis 

(PCA) to BOLD time series of five resting state brain networks and at each time 

point estimate dominant 𝑑𝑑𝑑𝑑𝑑𝑑 subspaces specific to the five resting state brain 

networks. Default mode network (DMN) regions were determined primarily 

according to (Fox, et al., 2005) and ROIs in the AAL atlas specific to DMN were 

selected according to (Wang , et al., 2012). We selected ROIs specific to 

Sensorimotor (SM) and Visual networks according to (Figueroa-Jimenez, et al., 

2020) and ROIs specific to Central executive network (CEN) were selected 

according to (Oliver, Hlinka, Kopal, & Davidsen, 2019). We selected ROIs in AAL 

atlas specific to Salience network comprising of dorsal anterior cingulate cortex 

and anterior insula. Further, we estimate entropy to capture the temporal stability 

of dominant dFC subspaces of whole brain resting state and dominant dFC 

subspaces specific to five resting state brain networks (DMN, CEN, SM, Salience 

and Visual) using angular distance and mahalanobis distance, across lifespan 

ageing. We report only significant modifications in temporal stability of dFC 

subspaces with age in Figure 5 (we report others in A 2.6) Regression analysis 

revealed a “U” shaped trend for temporal stability of dFC subspaces of whole-brain 

resting state, sensorimotor, central executive and visual network with age. We 

found significant increase in temporal stability of whole brain resting state in older 

adults (Figure 5A). Of the five resting state brain networks, the temporal stability 

of sensorimotor network exhibited significant increase in older adults (Figure 5B), 

similar to whole brain resting state. The temporal stability of central executive 

network (Figure 5C) and, visual network (Figure 5D) demonstrated significant 
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decrease with age. We found no significant modifications in temporal stability of 

dFC with Mahalanobis distance metric. We report results estimated using 

Mahalanobis distance metric in A 2.7. Detailed overview of the terms included in 

the regression analysis is shown in A 2.8. The profile of temporal stability, 

estimated with Mahalanobis distance across brain regions is shown in Figure 2.6. 

We report two examples for young, middle and, older adults, one – short-range 

temporal stability i.e., Mahalanobis distance between dominant dFC subspaces of 

DMN, CEN, SM, Salience and Visual networks at t=15 and t=20 (see Figure 2.6A) 

and two – long-range temporal stability i.e., Mahalanobis distance between 

dominant dFC subspaces of DMN, CEN, SM, Salience and Visual networks at 

t=15 and t=150 (see Figure 2.6B). In summary, short and long-range temporal 

stability was assessed empirically by comparing time points that were 5 and 135 

data points apart, respectively.  
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Figure 2.7: Stochastic characterization of dFC (A) Stochastic modelling of 
principal angle, 𝜙𝜙 (𝑡𝑡) as autoregressive, AR (𝜌𝜌) process. The model order (𝜌𝜌) was 
varied from 0 to 100. The plot represents Akaike information criterion (AIC) values 
corresponding to the model order. Inset shows the first minima of the AIC value 
and its corresponding model order. (B) Table shows first minimal AIC value and its 
corresponding model order of 𝜙𝜙 (𝑡𝑡)  for all the categories (C) Stochastic modelling 
of Mahalanobis distance, 𝑀𝑀 (𝑡𝑡) as AR (𝜌𝜌) process. The model order (𝜌𝜌) was varied 
from 0 to 100. The plot represents AIC values corresponding to the model order. 
Inset shows the first minima of the AIC value and its corresponding model order. 
(D) Table shows first minimal AIC value and its corresponding model order of 𝑀𝑀 (𝑡𝑡)  
for all the categories 
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2.3.4. Stochastic characterization of 𝑑𝑑𝑑𝑑𝑑𝑑 

We examined the stochastic structure of 𝑑𝑑𝑑𝑑𝑑𝑑 evolution by investigating the 

principal angle 𝜙𝜙 (𝑡𝑡) and Mahalanobis distance 𝑀𝑀 (𝑡𝑡)  as functions of time.  𝜙𝜙 (𝑡𝑡) 

and 𝑀𝑀(𝑡𝑡) are modelled as auto-regressive or AR (𝜌𝜌) process. The optimal model 

order was taken to be at the value which yields first lowest Akaike information 

criterion (AIC). The results from this analysis shown in Figure 7A and Figure 7B 

reveal the best fit model that explains 𝜙𝜙 (𝑡𝑡) has a model order ρ≥ 4 i.e., the results 

suggest 𝜙𝜙 (𝑡𝑡) of resting state, movie watching task and sensorimotor task, in both 

young and old adults, is neither random (ρ≠ 0) nor markovian (ρ≠ 1) in nature, 

and is dependent on at least 4 immediately preceding values of  𝜙𝜙. For 𝑀𝑀(𝑡𝑡), as 

shown in Figure 7C and Figure 7D  both resting state and tasks have the optimum 

model order 𝜌𝜌 ≥ 6, suggesting 𝑀𝑀(𝑡𝑡) is neither random (ρ≠ 0)  nor markovian (ρ≠

1)  in both young and old adults.  
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2.4. Discussion  

The functional architecture of the brain is dynamic and changes on a minute 

temporal scale during resting state and task (Gonzalez-Castillo J. , et al., 2015) 

(Hutchison & et al, 2013) (Gonzalez-Castillo & Bandettini, 2018) (Bolton, 

Morgenroth, Preti, & Van De Ville, 2020). While previous studies have explored 

flexibility (Zhang & et al, 2016) (Yin, et al., 2016) and temporal variability (Zhang & 

et al, 2016) (Li, Lu, & Yan, 2019) of the functional architecture of a specific region, 

we propose a novel unsupervised method, that captures the stability of whole-brain 

functional architecture on a minute temporal scale. First, we apply the data-driven 

unsupervised approach to characterize the high dimensional dynamic functional 

connectivity into lower dimensional patterns by identifying temporally similar 

dominant FC configurations. Subsequently, using two different measures - 

principal angle and Mahalanobis distance applied on dFCs extracted across time, 

we capture the stability of dFC through the temporal stability matrices that could 

be used to draw critical insights about underlying functional brain states. For 

empirical validation, we explored modifications in temporal stability matrices of 

whole-brain FC during a continuous, naturalistic movie watching task and discrete, 

goal oriented sensorimotor task and showed that, in contrast to resting state, 

stability increased during the task (stability was highest in the sensorimotor task, 

followed by naturalistic movie watching task and resting state). Next, we explored 

ageing specific modulations in temporal stability matrices of dFC patterns between 

resting state and task and showed an overall increase in stability during the tasks 

across lifespan ageing. To gather insight at each stage of adulthood, we divide 

N=645 participants into three age categories – young (18-40 years), middle (41-60 

years) and, old adults (61-88 years). Our results revealed significant differences in 
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temporal stability during task between young, middle and old adults. Temporal 

stability was highest in young adults, followed by middle and old adults during both 

movie-watching and sensorimotor task. Applying our unsupervised method on 

specific resting state brain networks revealed significant differences in temporal 

stability variation with age and allowed us to identify which of the resting state sub-

networks shape the global age-related pattern change. Finally, we examined the 

stochastic properties of temporal stability matrices using an auto-regressive 

modelling, and showed dominant whole-brain FC configurations are neither 

random nor Markovian. With our results, using a novel unsupervised method, we 

were able to demonstrate significant differences in stability of dFCs among 

conditions and age groups which establishes the validity of our analysis – in the 

sense that low-dimensional dFC subspaces and subsequent estimation of 

temporal stability using quantitative metrics substantiated group differences and 

condition specific effects. We discuss the implications of these key results in the 

following subsections. 

 
2.4.1. Stochastic properties of dynamic functional connectivity  

Studies describing brain dynamics have clustered recurring connectivity patterns 

into states, using clustering algorithms like K-means clustering (Allen E. , et al., 

2014) (Cabral, et al., 2017) (Damaraju, et al., 2014), HMM (Cabral, et al., 2017) 

(Vidaurre, Smith, & Woolrich, 2017) (Vidaurre, et al., 2016) (Quinn, et al., 2018), 

suggestive of stability of functional architecture of the brain. Yet, most of the studies 

hypothesize a fixed number of discrete recurrent connectivity patterns or states 

with varying temporal fractional occupancy. The homogenous states are 

essentially clustered ignoring their temporal order and index. Studies have shown 



Temporal stability in res�ng state, movie watching and sensorimotor task across healthy ageing 

Page | 48 
 

 

clustering time series requires ignoring some data and few attempts at clustering 

time series have shown to be objectively incorrect in some cases (Rakthanmanon 

T. , Keogh, Lonardi, & Evans, 2011) (Rahman, Damaraju, Saha, Plis, & Calhoun, 

2020). Rahman and colleagues (Rahman, Damaraju, Saha, Plis, & Calhoun, 2020) 

have proposed a novel framework, relying on the concept of shapelets, ‘statelets’- 

a high dimensional state-shape representation of temporal dynamics of functional 

connectivity, instead of clustering. Another set of prior studies have explored the 

other side of stability – flexibility, which characterises heterogenous connectivity 

between a specific region and others over time (Yin, et al., 2016) (Harlalka, Bapi, 

Vinod, & Roy, 2019) and temporal variability (Zhang & et al, 2016) (Li, Lu, & Yan, 

2019) of functional architecture in resting state (Li, Lu, & Yan, 2019) ,naturalistic 

movie watching task (Li, Lu, & Yan, 2019) and in disease (Zhang & et al, 2016). 

But these studies are restricted to temporal variability and flexibility of the functional 

architecture of a specific region. Our main contribution in this study is an 

unsupervised, data-driven approach to characterise the stability of whole-brain 

functional connectivity patterns. A recent study (Faghiri , et al., 2020) has proposed 

a new method, where they calculate the gradients of timeseries pair and use their 

weighted average of shared trajectory (WAST) as a new estimator of dFC. This 

method defines a subspace on the raw BOLD fMRI timeseries whereas our 

approach estimated dFC with BOLD phase coherence and defined dominant 

whole-brain FC patterns as dominant dFC subspaces with PCA and characterised 

temporally similar dominant whole-brain FC patterns with two alternative 

measures, angular distance and verifying the same with Mahalanobis distance 

(Figure 2.1B). The central idea is if the dominant FC configurations are similar for 

extended time points, then they are considered to be stable.  
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Viduarre and colleagues (Vidaurre, Smith, & Woolrich, 2017) have shown dynamic 

switching between brain networks and time spent visiting distinct brain networks 

are not random. Subsequently, another study has shown that the switching 

dynamics of functional brain states in the resting state follows AR model of order 

1, or in other words a Markovian process fully explains the dFC evolution when 

correlation was computed using a sliding window approach (liégeois, Laumann, 

Snyder, Zhou, & Yeo, 2017).  By constructing the unsupervised temporal stability 

matrices from two alternative approaches - principal angle, 𝜙𝜙 (𝑡𝑡) and Mahalanobis 

distance, 𝑀𝑀(𝑡𝑡), we reveal that dFC evolution is neither random nor Markovian 

(Figure7A and Figure7B) (Figure7C and Figure7D).  

 

2.4.2. Temporal stability of task related dynamic functional connectivity is higher 

than rest. 

A key finding of our study indicates a global spread of shorter-lived, repeated 

patterns of stability between dominant FC configurations in resting state and local 

spread of longer-lived repeated patterns of stability in the task (in both continuous, 

naturalistic movie watching task and discrete goal oriented sensorimotor task) 

(Figure 2.2 B and Figure 2.3A). We find that in resting state the stability patterns 

are global, widespread with both short range (stability estimated between dominant 

dFC subspaces at timepoints in close proximity, for ex:  𝑫𝑫𝑡𝑡𝑥𝑥 at t=15 and 𝑫𝑫𝑡𝑡𝑦𝑦  𝑎𝑎𝑎𝑎 𝑡𝑡 =

25) and long-range temporal stability patterns (stability estimated between 

dominant dFC subspaces at timepoints distant from one another, for ex: 𝑫𝑫𝑡𝑡𝑥𝑥 at t=15 

and 𝑫𝑫𝑡𝑡𝑦𝑦 at t=150), whereas in task temporal stability matrices, the stability patterns 

are limited with fewer long-range patterns. The resting state is shown to be a 

multistable stationary state-regime at equilibrium. In the absence of any stimuli, the 
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spontaneous resting state activity and the dynamics of formation and dissolution 

of Resting State Networks (RSNs) form multiple stable states (Deco & Jirsa, 2012). 

Ghosh and colleagues (Ghosh, Rho, McIntosh, Kötter, & Jirsa, 2008) have 

demonstrated that resting state networks operate close to instability and explore 

these states before committing to one of these states. Deco and Jirsa  (Deco & 

Jirsa, 2012) have proposed that a repertoire of multistable states exists in resting 

state, that are functionally meaningful and inherently supported by the 

neuroanatomical connectivity, and can be rapidly activated even in the absence of 

any task. We speculate that in resting state the global spread of shorter-lived 

repeated patterns of stability between dominant FC configurations is associated 

with the exploration of multistable dynamic repertoire of states. On the contrary 

during a task (continuous or discrete), the repertoire of multistable states are 

limited, as only task-specific, cognitively relevant brain networks are explored. The 

brain visits task-specific stable states for duration that a putative stimulus triggered 

cognitive process demands. This is associated with the local spread of longer-lived 

temporal similarities between dominant functional connectivity subspaces in a task.   

Our entropy results indicate the stability of functional connectivity architecture was 

highest in the discrete, goal-oriented sensorimotor task, followed by continuous 

naturalistic movie watching task and resting state (Figure 2.4A). This is in line with 

previous studies which report an increase in overall stability of FC with the largest 

increase in between-network connections (Elton & Gao, 2015) (Gonzalez-Castillo 

& Bandettini, 2018), increase in stability of hemispheric homotopic connections 

during a task (Gonzalez-Castillo J. , Hoy, Handwerker, & Bandettini, 2014). Such 

increased stability of FC during a task is hypothesised to be associated with 

cognitive constraints during a task (Gonzalez-Castillo & Bandettini, 2018). 
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Frobenius distance analysis results reveal the temporal stability matrices of 

functional connectivity during continuous, naturalistic movie watching task was 

closer to resting state than discrete, goal oriented sensorimotor task (Figure 2.4C). 

Considering our Frobenius distance analysis, we hypothesized stability of 

functional connectivity architecture should be highest in the sensorimotor task, 

followed by the naturalistic movie watching task, which was validated by our 

entropy results. Our findings thus provide evidence of increased temporal stability 

of whole-brain functional connectivity in task, highest in the discrete, goal-oriented 

task, followed by continuous, naturalistic movie watching task and then resting-

state, using a novel unsupervised approach of characterising the stability of 

functional connectivity architecture.   

 

2.4.3. Ageing introduces temporal variability in evolution of dynamic functional 

connectivity in both rest and task 

Evidence from prior studies reveal the complexity of FC dynamics remains similar 

for all participants irrespective of age. An earlier study (Viviano, Raz, Yuan , & 

Damoiseaux, 2017) found no association between age and rate of switching 

between the FC states for resting brain. Our results (Figure 2.2 B and Figure 2.3 

A) indicate the overall trend of global spread of shorter-lived repeated patterns of 

stability between dominant FC configurations in resting state and local spread of 

longer-lived repeated patterns of stability in the task, was similar in young, middle 

and old adults. Our study also revealed an overall trend of highest stability of 

functional connectivity in the discrete, goal-oriented sensorimotor task, followed by 

continuous, naturalistic movie watching task and resting state across lifespan 

ageing (Figure 2.4 A). The neural noise hypothesis suggests the age-related 
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cognitive decline could be explained as a consequence of the increase in the noisy 

baseline activity of the brain (Voytek, et al., 2015) (Davis , et al., 2009).  Our results, 

which contrasted the stability of functional architecture in young, middle and old 

adults (Figure 2.4B) found increased stability of functional architecture in young 

adults, followed by middle and old adults in movie watching and sensorimotor task. 

In accordance to neural noise hypothesis, the decrease in stability of the functional 

architecture of the brain in older adults can be explained with an increase in neural 

noise with age. Interestingly, McIntosh and colleagues (McIntosh, et al., 2010) 

have reported BOLD signal variability of hub-region decreases with age, 

suggestive of increase in stability of hub regions with age. Our results, contrasting 

the stability of functional architecture of resting state in young, middle and old 

adults, report high stability in young and old adults and low stability in middle adults 

(Figure 2.4B). Previous resting state studies have reported quadratic or U-shaped 

trajectories of between-network connections with age (Betzel, et al., 2014)  (Cao, 

et al., 2014). (Kupis, et al., 2021) demonstrate a U-shaped or quadratic trajectory 

among between-network connections in certain resting-state brain states in 

relation with cognitive flexibility across lifespan ageing. They also report shorter 

dwell time in middle adulthood and longer dwell time in childhood and older 

adulthood. Our result, scatter plot of entropy of whole-brain temporal dynamics 

matrices of resting state across lifespan ageing (N=645 participants) (Figure 2.5A) 

revealed an inverted U-shaped trajectory - with peak entropy among middle adults 

and low entropy among young and older adults. Our results are in line with (Kupis, 

et al., 2021) as shorter dwell time in middle adulthood among brain states suggests 

decrease in stability of functional architecture in middle adults.  
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2.4.4. Dynamics of whole brain resting state is primarily influenced by stability of 

sensorimotor network across lifespan ageing 

Earlier studies investigating age-related changes in resting state networks across 

lifespan have reported decrease in functional connectivity within default mode 

network (DMN) from early to late adulthood (Tomasi & Volkow, 2012) (Jockwitz & 

Caspers, 2021). (Betzel, et al., 2014) found decrease in resting state network 

modularity with age indicative of decrease in functional cohesiveness. (Chen, et 

al., 2021) report, in older adults, decrease in dwell time on a state where DMN and 

attention networks show antagonistic activity. They report increase in dwell time on 

a “baseline” state, and, higher transition probabilities from others to this state in the 

elderly. Our results, using angular distance metric, demonstrate significant 

decrease in temporal stability of central executive network (CEN) and, Visual 

networks in older adults (Figure 5C and Figure 5D). Whereas, the temporal stability 

of whole-brain resting state dFC and sensorimotor network significantly increased 

with age (Figure 5A and Figure 5B). Of the five resting state networks, we find 

stability dynamics of whole-brain resting state closely follows that of sensorimotor 

network with age.  Recently,  (Kong, et al., 2021) have shown causal manipulation 

of a large-scale circuit model describing resting state brain dynamics, suggests that 

sensorimotor regions are a driver of FC dynamics.  (King, et al., 2017) attribute 

age-related decline in motor performance to decrease in segregation of large-scale 

brain networks rather than age-related connectivity changes within motor-related 

network. Our results demonstrate the influence of stability of sensorimotor network 

on stability dynamics of whole-brain resting state, which (King, et al., 2017) have 

associated with age-related decline in motor performance. We did not find 

significant differences in temporal stability of resting state networks with age using 



Temporal stability in res�ng state, movie watching and sensorimotor task across healthy ageing 

Page | 54 
 

 

Mahalanobis distance metric (see A 2.7). The differences in temporal stability of 

dominant subspaces across resting state networks with angular distance and 

Mahalanobis distance could be an outcome of the limitations of computing 

angular/Mahalanobis distance between linear subspaces. The Mahalanobis 

distance is a multidimensional generalization of the distance between a point P 

and a distribution D (Mahalanobis, 1930). In the current study, for each timepoint, 

Mahalanobis distance was calculated between each ROI in the reduced dominant 

dFC subspace 𝑫𝑫𝑡𝑡𝑦𝑦and whole-brain subspace 𝑫𝑫𝑡𝑡𝑥𝑥. Every ROI in 𝑫𝑫𝑡𝑡𝑦𝑦 (point P) has 

Mahalanobis distance estimated with respect to subspace 𝑫𝑫𝑡𝑡𝑥𝑥 (distribution D). In 

our case, Mahalanobis distance is the mean of the distance of all the points (i.e., 

ROIs) in dominant dFC subspace at t = 𝑡𝑡𝑖𝑖 with distribution of dominant dFC 

subspace at t = 𝑡𝑡𝑗𝑗   whereas angular distance is the scalar angle between the 

dominant dFC subspace at t = 𝑡𝑡𝑖𝑖  with dominant dFC subspace at t = 𝑡𝑡𝑗𝑗.  

Mahalanobis distance takes into account the correlations of the data and, is a 

scale-invariant measure (Maesschalck, Jouan-Rimbaud,, & Massart, 2000).  

Another reason may be due to the high dimensionality of the dynamic functional 

connectivity, the data is sparsely distributed in the high dimensional subspace, - 

referred to as “curse of dimensionality” (Y. Kuo & Sloan, 2005). Although principal 

component analysis (PCA) is a robust dimensionality reduction technique, used to 

circumvent “curse of dimensionality”, studies have found PCA is sensitive to 

outliers (J. Cand`es, Li, Ma, & Wright, 2011)  and, degradation of performance of 

PCA when the dimensionality of data increases (Shetta & Niranjan, 2020) .    
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2.4.5. Limitations and Future directions 

An important caveat of the current study was due to parcellation atlas used in the 

Cam-CAN dataset. The AAL atlas parcellates the brain regions into 116 structural 

parcels and few parcels span multiple functional regions. For future studies, for a 

more refined spatial profile of temporal stability of functional architecture, using a 

finely parcellated brain atlas is recommended. Researchers have shown stability 

of functional architecture is modified in patients of Schizophrenia, ADHD and ASD  

(Zhang & et al, 2016) (Guo, Zhao, Tao, Liu, & Palaniyappan, 2017). Hence, we can 

extrapolate that the temporal stability of functional architecture can provide a richer 

information to discover biomarkers for neurological and mental disorders. A 

meaningful extension of the present work would be to investigate the influence of 

subject-level characteristics and even, behavioural scores on temporal stability of 

FC. We want to address this in a future study including all different variables and 

demographic information over adult life span. This exercise could also strengthen 

and provide evidence for the robustness of the method and may aide in uncovering 

temporal stability markers specific to the tasks. 

 

2.4.6. Conclusion 

In summary, the current study introduces a data-driven unsupervised approach to 

characterise the temporal stability of functional architecture. When applied to a 

putative lifespan ageing data, the whole-brain temporal dynamics of naturalistic 

movie watching task was found to be closer to resting state than during 

sensorimotor task.  Further, the study revealed peak temporal stability in 

sensorimotor task, followed by naturalistic movie watching task and resting state, 

a trend similar in both young, middle and elderly. The dynamics of the temporal 
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stability of functional architecture of the whole-brain resting state was primarily 

influenced by temporal stability of sensorimotor network across lifespan ageing. 

The quantification of differences in network stability associated with healthy ageing 

provides evidence for the potency of the temporal stability measure to act as 

biomarker for multiple neurological disorder 
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Chapter 3 
Temporal stability of resting 
state functional connectome 
across common mental 
disorders 
 

3.1. Introduction 

Common mental disorders, such as bipolar disorder, ADHD, and schizophrenia, 

have a significant societal impact in terms of disability-adjusted life years (DALYs), 

years lived with disability (YLDs), and years of life lost (YLLs) (Alize J Ferrari, 

2022). Developing prevention and intervention strategies to assist behavioural 

psychiatrists is crucial in addressing these disorders. Non-invasive neuroimaging 

techniques, including functional magnetic resonance imaging (fMRI) and brain 

connectivity analytics, have emerged as powerful tools for early detection and 

management of these disorders  (Edgar Canario, 2021) (Miranda, Paul , Putz, 

Koutsouleris, & Muller-Myhsok, 2021). The spontaneous resting state dynamics of 

the brain, which is believed to emerge from more robust metabolic and neural 

information processing principles (Deco , Jirsa , & McIntosh, 2010) (Smith , et al., 

2013) offers a practical framework for investigating biomarkers of common mental 

disorders. Previous studies investigating alterations in resting-state brain dynamics 

in common mental health disorders have largely focused on the strategies of 

functional connectome communities – the mesoscale organization of individual 

neural elements into motifs, circuits, or clusters (Betzel , Medgalia , & Bassett, 
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2018). These studies have reported changes in community organization and 

decreased modularity in functional brain networks in schizophrenia and bipolar 

disorder  (Alexander-Bloch, et al., 2010) (Yu , et al., 2020) (Lerman-Sinkoff & Barch 

, 2016). Other studies using multilayer community detection algorithms have 

reported altered community structure and higher flexibility in patients with 

schizophrenia (Gifford , et al., 2020) and ADHD (Ding , et al., 2022).  A major 

drawback of most of these studies, in addition to the methodological biases of the 

community detection algorithms (Betzel , Medgalia , & Bassett, 2018) is the 

utilization of static functional connectivity to detect functional connectome 

communities. Recently, it has been demonstrated that resting-state functional brain 

networks exhibit spontaneous, time-varying, large-scale dynamic reconfiguration 

(Hutchison , et al., 2013) (Cabral , et al., 2017) (Allen E. , et al., 2014) .This 

suggests that measures assuming stationarity for the entire duration of the scan 

are too simplistic to capture the full extent of resting brain dynamics (Preti, Bolton, 

& De ville, 2017). 

Dynamic functional connectivity (dFC) has been shown to exhibit non-random and 

non-trivial temporal structures (Lombardo, et al., 2020) and is associated with 

cognitive processing, learning, attention, and performance (Cohen , 2018), 

(Bassett, et al., 2011), (Kucyi, Hove , Esterman, Hutchison, & Valera, 2017), (Jia , 

Hu, & Deshpande , 2014) . The dysconnectivity observed in common mental health 

disorders suggests the presence of complex and transient spatiotemporal 

alterations in functional connectivity (Alexander-Bloch , et al., 2012), (Gifford , et 

al., 2020).  This naturally raises the question: Are there alterations in dynamic 

functional connectivity (dFC) within the resting state functional connectome in 

common mental disorders? How can these patterns of dFC be accurately captured 
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and comprehensively studied? Moreover, can these patterns of dFC serve as 

characterizations for common mental disorders? Earlier studies have emphasized 

the significance of stability in dFC patterns over time for ensuring consistent 

information representation in the distributed neural connectome (Le , Lu , & Yan , 

2020). While several studies have examined the temporal stability of the brain's 

functional connectome during resting state (Le , Lu , & Yan , 2020) and throughout 

healthy lifespan aging (Sastry, Roy, & Banerjee, 2023) only a limited number of 

studies have investigated alterations in the temporal stability of the whole-brain 

dynamic functional connectome in common mental health disorders (Zhang , et al., 

2021) (Dong , et al., 2019).  

A common approach to investigate the temporal stability of dFC is to summarize 

resting state brain activity into discrete states using techniques such as the K-

means clustering algorithm (Allen E. , et al., 2014) (Cabral , et al., 2017) or the 

Hidden Markov model (Viduarre, Smith, & Woolrich , 2017) (Surampudi, et al., 

2018). Temporal stability is then estimated by measuring the "switching rate" 

between these brain states. The switching rate, also known as flexibility, quantifies 

how quickly a specific node transitions between different brain states. Higher 

flexibility suggests more frequent transitions, which leads to reduced temporal 

stability (Long , Lu, & Liu, 2023). Other graph theoretical studies measure temporal 

stability by introducing the temporal correlation coefficient, which estimates the 

tendency of a dynamic brain network to remain stable over time. This coefficient 

calculates the average topological overlap of the network connections (Long , et 

al., 2023). However, these studies, which assume the existence of multiple discrete 

brain states, are limited by methodological drawbacks of the clustering algorithm 

and the predefined number of states (Rakthanmanon T. , Keogh, Lonardi, & Evans 
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, 2011) (Allen E. , et al., 2014) . As a result, they are ineffective in describing the 

temporal evolution of dFC. An alternative perspective is to view the temporal 

dynamics of dFC as a continuous process, investigating global and regional 

dynamics by measuring variability and similarity using techniques like Pearson 

correlation (Zhang , et al., 2016), angular distance (Sastry, Roy, & Banerjee, 2023) 

or dFCSpeed (Arbabyazd, et al., 2020). Previous studies on mental health 

disorders have associated increased temporal variability in schizophrenia with 

decreased stability in visual and subcortical regions (Zhang , et al., 2016) and 

reduced dFC variability in default mode and fronto-parietal networks (Dong , et al., 

2019). Bipolar disorder showed a decreased switching rate in the precuneus, 

dorsal medial prefrontal cortex, and parahippocampal gyrus (Han , et al., 2020). 

Zhang and colleagues (Zhang , et al., 2016) reported decreased temporal stability 

in the default mode network in ADHD patients. However, most studies on temporal 

stability in mental health disorders focus on region-wise dFC patterns. 

The objective of this study is to investigate the potential of dFC measures as 

characterizing tools for common mental disorders. The analysis utilizes two 

datasets consisting of 408 participants diagnosed with schizophrenia, bipolar 

disorder, and ADHD. The initial analysis focuses on exploring differences in 

community structure and interactions across these mental health disorders, using 

a generative community detection approach and mapping community interactions 

into assortative, coreness, and peripheryness motifs (Betzel, Bertolero, & Bassett, 

2018). Next, the temporal dynamics of the resting state dynamic functional 

connectome, both at the whole-brain and network level, are characterized and 

visualized as a temporal landscape. An unsupervised data-driven approach 

described in  (Sastry, Roy, & Banerjee, 2023) is used to estimate temporal stability. 
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Two novel measures are introduced: 1) entropy, which calculates temporal stability 

across all time points over the entire temporal landscape, and 2) global temporal 

distance, which quantifies temporal stability across successive time points. 

Through this comprehensive analysis, the study aims to gain insights into the 

potential of dFC measures as effective characterizing tools for common mental 

disorders. The analysis of two datasets, with a total of 408 participants, provides 

new evidence to draw critical insights about disease-specific modifications in 

temporal stability and community structure of the dynamic functional connectome.  
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3.2. Material and methods  

3.2.1.  Participants and Image acquisition 

Overall, the study included two multicentre datasets involving 408 human 

participants. We downloaded resting state functional magnetic resonance imaging 

(fMRI) data from 285 participants who participated in the University of California 

Los Angeles (UCLA) Consortium for Neuropsychiatric Phenomics LA5c study 

(Dataset 1) (Poldrack, et al., 2016) (Gorgolewski, Durnez , & Poldrack, 2017). The 

public database was obtained via openfMRI (https://openfmri.org/dataset/ 

ds000030/) and includes 138 healthy controls (HC), 58 individuals diagnosed with 

schizophrenia (SZ), 40 with attention deficit hyperactivity disorder (ADHD) and 49 

with bipolar disorder (BP).  Data from 14 healthy controls and 8 participants with 

schizophrenia were removed during preprocessing (see below). For both healthy 

and patient groups, participants were men or women, of any racial group, whose 

primary language was either English or Spanish, who completed at least 8 years 

of formal education, no significant medical illness, had visual acuity 20/60 or better 

and urinalysis negative for drugs of abuse (Cocaine; Methamphetamine; Morphine; 

THC; and Benzodiazepines) (Poldrack, et al., 2016). In the healthy control group, 

participants were excluded if they had lifetime diagnosis of Schizophrenia, Bipolar 

I or II disorder, substance abuse/dependence or current major Depressive disorder, 

suicidality, anxiety disorder and ADHD. Healthy participants were also screened for 

threshold ADHD and they could not have had medication treatment for ADHD 

within the prior 12 months. Each of the patient groups (SZ, BP, ADHD) excluded 

anyone with one of these other diagnoses. Stable medications were permitted for 

the patients. Participants who were left-handed, pregnant or had other conditions 

(metal in the body) were excluded for MRI studies (Poldrack, et al., 2016). The 
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resting state fMRI (rs-fMRI) data was acquired on 3T Siemens Trio scanner using 

echo planar imaging (EPI) sequence consisting of 152 volumes with the following 

parameters – slice thickness = 4mm, TR = 2s, TE = 30ms, flip angle = 90°, 

acquisition matrix = 64 X 64 sq.mm, voxel size = 3 X 3 X 4 mm3. More details on 

acquisition parameters can be found in (Poldrack, et al., 2016). 

For the replication analysis, a publicly available dataset from the center for 

Biomedical Research Excellence (COBRE) was obtained (Calhoun, et al., 2012) 

(Bellec, 2016). The neuroimaging dataset (Dataset 2) included resting state 

functional MRI scans from 72 participants with schizophrenia and 74 healthy 

controls. All the subjects were screened and excluded if they had a history of 

mental retardation, a history of severe head trauma with more than 5 mins of loss 

of consciousness, history of substance abuse or dependence within the last 12 

months. Diagnostic information was collected using the Structured Clinical 

interview used for DSM disorders (SCID). The eyes open rs-fMRI data was 

collected with echo-planar imaging (EPI sequence) consisting of 150 volumes, 

scan duration of 5 mins with a repetition time (TR) = 2s, echo time = 29 ms, 

acquisition matrix = 64 X 64 sq.mm, flip angle = 75 ° and voxel size = 3 X 3 X 4 

mm3. A detailed description of acquisition parameters can be found in (Bellec, 

2016).  
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Figure 3.1 a brief overview of the methodology used in this study. (A) shows 
the BOLD time series data (B) illustrates the estimation of static functional 
connectivity using Pearson correlation, which is then transformed using the r-to-z 
method (C) displays topographic representation of the WSBM communities. The 
subject-wise undirected, signed, weighted adjacency matrix serves as the input for 
the Weighted Stochastic Block Model (WSBM), a data-driven generative 
community detection algorithm that groups brain areas into K=7 communities 
based on their stochastic equivalence. (D) presents the matrix representation of 
the reduced dominant dynamic functional connectivity (dFC) patterns, denoted as 
D(t), computed at each time point (E) demonstrates the calculation of similarity 
between dominant dFC subspaces using angular distance or principal angle (ϕ) (F) 
showcases the Time X Time temporal stability matrix, where each entry represents 
the principal angle �𝜙𝜙 (𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦� between dominant dFC subspaces at time points  𝑡𝑡𝑥𝑥 
and 𝑡𝑡𝑦𝑦. This matrix visualizes the temporal landscape, with the principal angle 
ranging from 0 (indicating low angular distance) to π/2 (indicating high angular 
distance). Constructing a Time X Time temporal stability matrix allows us to 
visualize the temporal "landscape" for the entire duration of the scan. (G) we 
calculate the temporal stability of the dynamic functional connectome using two 
measures: entropy and global temporal distance. We investigate changes in 
community architecture in common mental health disorders such as schizophrenia, 
bipolar disorder, and ADHD. 
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3.2.2.  Data preprocessing and parcellation 

The rs-fMRI images were pre-processed using the CONN toolbox (McGovern 

Institute for Brain Research, MIT, USA) running under MATLAB (The MathWorks). 

The default CONN preprocessing pipeline (defaultMNI) was used which includes 

the following steps: functional realignment and unwarp; slice-time correction; 

outlier identification; direct segmentation and normalization; functional smoothing.  

In the first step, the fMRI data were unwarped and realigned using SPM12 realign 

& unwarp procedure (Andersson, Hutton, Ashburner, Turner, & Friston , 2001) 

where all scans are co-registered to a reference image using a least squares 

approach, resampled using b-spline interpolation to correct for motion and 

magnetic susceptibility interactions. Temporal misalignment between different 

slices of the functional data was corrected using SPM splice-timing correction 

(STC) procedure (Sladky , et al., 2011). Potential outlier scans were identified using 

ART. Functional and anatomical scans were normalized to standard MNI space, 

segmented into grey matter, white matter and cerebro-spinal fluid (CSF) tissue 

classes, and resampled to 2mm isotropic voxels following a direct normalization 

procedure using SPM unified segmentation and normalization algorithm (Calhoun, 

et al., 2017). Lastly, functional data is smoothed using spatial convolution with a 

Gaussian kernel of 8 mm full-width half maximum (FWHM). In addition, functional 

data were denoised using a standard denoising procedure (Castanon, 2020), 

followed by bandpass frequency filtering of BOLD time series between 0.01 Hz and 

0.1 Hz.  In Dataset 1, an inspection of fMRI data for each subject resulted in the 

exclusion of 14 healthy controls and 8 schizophrenics whose data did not include 

– 1) all 152 functional volumes 2) T1 w structural images. A detailed overview of 
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the preprocessing pipeline can be found at https://web.conn-toolbox.org/fmri-

methods/preprocessing-pepeline . The final datasets used in this analysis  

and their group characteristics are described in Table 3.1. Resting state scans of 

each participant were parcellated using 400 region Schaefer parcellation (Schaefer 

, et al., 2018). This atlas was chosen as it pre-allocates brain regions or nodes into 

resting state networks (RSNs). For each subject, mean BOLD time series (Figure 

3.1A) were estimated for each region over all voxels belonging to that brain region.  

 
Table 3.1 Demographics of the UCLA consortium for Neuropsychiatric phenomics 
LA5c dataset (Dataset 1) and COBRE dataset (Dataset 2) used in this study 

 Groups N Age (years) Sex (% female) 

UCLA dataset 
(Dataset 1) 

Schizophrenia 50 36.46 ± 8.87 24 % 

Healthy Controls  124 31.58 ± 8.80 44.90 % 

Bipolar disorder  49 35.28 ± 9.02 42.80 % 

ADHD  40 33.09 ± 10.7 51.16 % 

COBRE Dataset 
(Dataset 2) 

Schizophrenia 71 38.16 ± 13.8 19.71 % 

Healthy Controls  74 35.82 ± 11.5 31.08 % 
 

3.2.3. Estimating time dependant functional connectivity and dominant dFC 

matrices  

 These methods have first been introduced in (Sastry, Roy, & Banerjee, 2023) in 

the context of healthy ageing. Here we provide a brief explanation. For each 

subject, we estimate time-resolved dynamic functional connectivity (dFC) using 

BOLD phase coherence (Figure 3.1A) (Glerean E. , Salmi, Lahnakoski, 

Jaaskelainen, & Sams , 2012) (Deco & Kringelbach, 2016) (Cabral , et al., 2017), 

which resulted in a matrix with size N X N X T, where N = 400 is the number of 

brain regions, T is the total number of time points (T = 152 for Dataset 1, and T= 

150 for Dataset 2). First, instantaneous phases θ (n, t) of the BOLD signals for all 

https://web.conn-toolbox.org/fmri-methods/preprocessing-pepeline
https://web.conn-toolbox.org/fmri-methods/preprocessing-pepeline
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the brain regions n, was calculated using Hilbert transform. Given the phases of 

BOLD signals, phase coherence between brain areas n and p at each timepoint t, 

i.e., dFC (n, p, t) is computed as: 

             𝑑𝑑𝑑𝑑𝑑𝑑 (𝑛𝑛,𝑝𝑝, 𝑡𝑡) = cos  (𝜃𝜃 (𝑛𝑛, 𝑡𝑡) −  𝜃𝜃(𝑝𝑝, 𝑡𝑡))                                                  (3.1) 

 

To characterize the evolution of dFC over time, we extract dominant subspace of 

dFC patterns (Figure 3.1B), by applying PCA (Friston K. , Frith, Liddle , & 

Frackowiak, 1993) (Sastry, Roy, & Banerjee, 2023). Accordingly, dFC (n, p, t). dFC 

(n, p, t) can be expressed as  

          𝑑𝑑𝑑𝑑𝑑𝑑 (𝑛𝑛,𝑝𝑝, 𝑡𝑡) = 𝑉𝑉𝑇𝑇𝑆𝑆𝑆𝑆                                                                                (3.2)                                     

 

Where matrix V with size N X N, is the set of eigen vectors with each column (1 X 

N) representing an orthogonal principal component and S is the diagonal matrix 

�
𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝑛𝑛

�, 

 such that 𝜆𝜆1 >  𝜆𝜆2 . . . 𝜆𝜆𝑛𝑛. If m (in this study, m=3) is the number of principal 

components chosen, then dominant dFC (𝐷𝐷𝑡𝑡) can be expressed as:  

         𝐷𝐷𝑡𝑡 =  𝑉́𝑉𝑇𝑇𝑆́𝑆𝑉́𝑉                                                                                              (3.3) 

 

Where 𝑉́𝑉𝑇𝑇 is dimensionally reduced matrix of size N X m, 𝑆́𝑆 is a diagonal matrix 

�
𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝑚𝑚

�.   
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3.2.4.  Constructing temporal stability matrices  

 Given a set of dominant dFC matrices (𝐷𝐷𝑡𝑡), we seek to characterize temporal 

stability using the similarity of dFC patterns across timepoints. We use angular 

distance (Figure 3.1C) (Bjorck & Golub, 1973) (Banerjee A. , Pillai, Sperling , Smith 

, & Horwitz, 2012) (Sastry, Roy, & Banerjee, 2023) to estimate the similarity 

between dominant dFC subspaces. We define angular distance as the principal 

angle between dFC subspaces from different timepoints, given by: 

         𝜙𝜙 �𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦� =  ∠(𝐷𝐷𝑡𝑡𝑥𝑥 ,𝐷𝐷𝑡𝑡𝑦𝑦)                                                                             (3.4) 

 

Where  𝜙𝜙 �𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦� is the principal angle between dominant dFC subspaces, 

𝐷𝐷𝑡𝑡𝑥𝑥  𝑎𝑎𝑎𝑎𝑎𝑎  𝐷𝐷𝑡𝑡𝑦𝑦 at time 𝑡𝑡𝑥𝑥 and 𝑡𝑡𝑦𝑦. For each subject, we construct a time X time temporal 

stability matrix where each entry in the matrix is 𝜙𝜙 �𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦�. The principal angle 

ranges between 0 (low angular distance) to π/2 (high angular distance).  The low 

angular distance between dominant dFC subspaces indicates that their dFC 

configurations are very similar, on the other hand, the high angular distance points 

to dissimilar dFC configurations.           

 

3.2.5.  Measures of temporal stability  

Constructing a time X time temporal stability matrix allows us to visualize the 

‘temporal landscape’ (Figure 3.1D) for the entire duration of the scan. Visual 

inspection indicates differences in temporal landscape between healthy controls 

and patient groups. We introduce two distinct perspectives on measures of 

temporal stability – firstly, we seek to quantify temporal stability over the entire time 

X time temporal landscape across all timepoints. To achieve this, we evaluate the 



Temporal stability of res�ng state func�onal connectome across common mental disorders 

Page | 69 
 

 

informational content of the stability matrices by calculating entropy (Sastry, Roy, 

& Banerjee, 2023). We use entropy because it is a more direct measure of order 

and disorder in a dynamical system and provides us a measure of distinguishable 

temporal order that can be interpreted as the overall stability of the temporal 

stability landscape (Yang, et al., 2013). Entropy is defined by the following 

equation: 

                           𝐸𝐸 =  −∑𝑝𝑝 log (𝑝𝑝)                                                                  (3.5) 

 

Where p contains normalized histogram counts returned from “imhist.m” applied 

on temporal stability matrices, estimated using reduced 𝐷𝐷𝑡𝑡𝑥𝑥  𝑎𝑎𝑎𝑎𝑎𝑎  𝐷𝐷𝑡𝑡𝑦𝑦. “imhist.m” 

calculates the histogram of temporal stability matrices and returns the normalized 

counts. Overall temporal stability is estimated as follows  

                           𝑇𝑇𝑇𝑇 = 1/𝐸𝐸                                                                                (3.6) 

 

Secondly, we seek to quantify temporal stability across successive time windows. 

To do this, we estimate the global temporal distance by taking the average of the 

off-diagonal elements of the temporal stability matrix. The off-diagonal elements 

are angular distances among dominant dFC subspaces at two successive time 

points, thus the term ‘global’ signifies that the measure captures a temporally 

averaged snapshot of the dFC evolution.  

                     𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1
(𝑡𝑡−1)

 ∑ 𝜙𝜙(𝑡𝑡𝑖𝑖𝑇𝑇−1
𝑖𝑖,𝑗𝑗=𝑖𝑖+1,𝑖𝑖≠𝑗𝑗 , 𝑡𝑡𝑗𝑗)                  (3.7) 
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Where, 𝜙𝜙 (𝑡𝑡𝑖𝑖, 𝑡𝑡𝑗𝑗) is the angular distance entry at ith row and jth column in the 

temporal stability matrix, T is the total number of timepoints.  Global temporal 

stability (TSglobal) is defined as the inverse of the global temporal distance: 

                 𝑇𝑇𝑇𝑇 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 1
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

                                                       (3.8) 

 

3.2.6. Model-based community detection using the weighted stochastic block 

model (WSBM) on static FC 

We estimate the static functional connectivity (Friston K. , 2011) between two brain 

areas, n, p by calculating the Pearson correlation between BOLD time series of 

brain areas n, p (Biswal, Yetkin, Haughton, & Hyde , 1995) (Figure 3.1E). The 

correlations were subsequently r-to-z transformed. The N X N functional 

connectivity matrix was represented as a network in which regions were 

represented by network nodes and functional connectivity between region n and 

region p was represented by network edge between nodes n and p (Bassett, Zurn 

, & Gold , 2018). Thereafter, subject-wise undirected, signed, weighted adjacency 

matrix (A) was estimated for detection of community architecture.  

The weighted stochastic block model (WSBM) is a generative model for learning 

community structure, which places each of the n nodes (brain areas) in the 

adjacency matrix A into one of k communities or “blocks” (Aicher , Jacobs , & 

Clauset, 2015). Nodes in the same community are stochastically equivalent, 

indicating their equivalent roles in generating the network’s structure. In its classic 

form stochastic block model (SBM), assumes an unweighted network, and the 

probability of edge existence is learned for each block. The weighted stochastic 

block model (WSBM) is a generalization of SBM that can learn from both the 
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presence and weight of the edges. Specifically, WSBM models each weighted 

edge Aij as a draw from a parametric family distribution, whose parameters μ and 

σ depend only on block memberships of connecting nodes i and j (Aicher , Jacobs 

, & Clauset, 2015) (Tooley , Bassett, & Mackey, 2022).  

In the SBM, the network’s adjacency matrix A contains binary values for edge 

existence, 𝐴𝐴𝑖𝑖𝑖𝑖  𝜖𝜖 {0,1}, k denotes the fixed number of blocks or communities and 

vector z contains the group label for each node 𝑍𝑍𝑖𝑖 ∈ {1, 2, … . .𝑘𝑘}. The SBM assigns 

an edge existence parameter to each edge bundle 𝜃𝜃𝑘𝑘𝑘́𝑘. Assuming the placement 

of the edges are independent of one another, the likelihood function of SBM for 

𝐴𝐴𝑖𝑖𝑖𝑖  can be written as: 

                    Pr(𝐴𝐴 | 𝑧𝑧,𝜃𝜃) =  ∏ 𝜃𝜃𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗
𝐴𝐴𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖  ( 1 −  𝜃𝜃𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗)
1− 𝐴𝐴𝑖𝑖𝑖𝑖                                        (3.9) 

Which can be rewritten as, 

        Pr(𝐴𝐴 | 𝑧𝑧,𝜃𝜃) =  ∏ exp(𝐴𝐴𝑖𝑖𝑖𝑖. log �
𝜃𝜃𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗

1−𝜃𝜃𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗
� + log( 1 − 𝜃𝜃𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗)) 𝑖𝑖𝑖𝑖                         (3.10) 

The community structure of WSBM retains the stochastic equivalence principle of 

SBM. In case of WSBM instead of edge-existence probabilities, each edge bundle 

is now parameterised by a mean and variance i.e., 𝜃𝜃𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗 = (𝜇𝜇𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗 ,𝜎𝜎
2
𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗). The 

likelihood function would be, 

Pr(𝐴𝐴 | 𝑧𝑧, 𝜇𝜇,𝜎𝜎2) = ∏ Ν (𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �𝜇𝜇𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗 ,𝜎𝜎
2
𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗� =   ∏ exp(𝐴𝐴𝑖𝑖𝑖𝑖 . log�

𝜇𝜇𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗
 𝜎𝜎2𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗

� − 𝐴𝐴2. 1
2𝜎𝜎2𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗

− 1.
𝜇𝜇2𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗
 𝜎𝜎2𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗

𝑖𝑖𝑖𝑖      (3.11) 

 
Where 𝜇𝜇 ∈  𝑅𝑅𝑘𝑘 𝑋𝑋 𝑘𝑘 and 𝜎𝜎2  ∈  𝑅𝑅𝑘𝑘 𝑋𝑋 𝑘𝑘 are model parameters, 𝐴𝐴𝑖𝑖𝑖𝑖 is the adjacency 

matrix, 𝜇𝜇𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗  𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎2𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗   parameterize the weights of edges between community 𝑧𝑧𝑖𝑖 

and 𝑧𝑧𝑗𝑗, Pr(𝐴𝐴 | 𝑧𝑧, 𝜇𝜇,𝜎𝜎2) denotes the probability of generating the network A given the 
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parameters. For each subject, for a given n x n adjacency matrix, we estimate 

WSBM and maximize the likelihood using variational bayes algorithm described by 

(Aicher , Jacobs , & Clauset, 2015). We select k=7 (number of communities) 

(Tooley , Bassett, & Mackey, 2022) (Allen E. , et al., 2014) and repeat the 

optimization procedure 30 times for each subject.  We implement the WSBM 

procedure in MATLAB using freely available code and estimate a weighted 

stochastic block model for each subject (https://aaronclauset.github.io/wsbm/) (Tooley 

, Bassett, & Mackey, 2022).  

 

3.2.7. Measures for community architecture and interaction motifs  

WSBM assigns brain areas into communities (Figure 3.1F). We characterize the 

interaction between communities using interaction motifs described in (Betzel , 

Medgalia , & Bassett, 2018) (Betzel, Bertolero, & Bassett, 2018). One dimension 

on which we characterized the community interaction was the extent to which 

detected communities were assortative. The interaction between two communities, 

r, and s, can be characterized by the community densities:  

𝜔𝜔𝑟𝑟𝑟𝑟 =  1
𝑁𝑁𝑟𝑟𝑁𝑁𝑟𝑟

 ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗∈𝑟𝑟                                                                    (3.12) 

𝜔𝜔𝑠𝑠𝑠𝑠 =  
1

𝑁𝑁𝑠𝑠𝑁𝑁𝑠𝑠
 � 𝐴𝐴𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗∈𝑠𝑠

 

𝜔𝜔𝑟𝑟𝑟𝑟 =  
1

𝑁𝑁𝑟𝑟𝑁𝑁𝑠𝑠
 � 𝐴𝐴𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗∈𝑟𝑟

 

  

https://aaronclauset.github.io/wsbm/


Temporal stability of res�ng state func�onal connectome across common mental disorders 

Page | 73 
 

 

Where 𝑁𝑁𝑟𝑟 and 𝑁𝑁𝑠𝑠 are the number of nodes assigned to communities r and s and A 

is the adjacency matrix. Given these community densities, we classify their 

interactions as follows: 

𝑀𝑀𝑟𝑟𝑟𝑟 =

⎩
⎨

⎧
    𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,           𝑖𝑖𝑖𝑖min(𝜔𝜔𝑟𝑟𝑟𝑟 ,𝜔𝜔𝑠𝑠𝑠𝑠) >  𝜔𝜔𝑟𝑟𝑟𝑟
  𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑖𝑖𝑖𝑖 𝜔𝜔𝑟𝑟𝑟𝑟 > 𝜔𝜔𝑟𝑟𝑟𝑟 > 𝜔𝜔𝑠𝑠𝑠𝑠 
𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ,        𝑖𝑖𝑖𝑖 𝜔𝜔𝑠𝑠𝑠𝑠 >  𝜔𝜔𝑟𝑟𝑟𝑟 > 𝜔𝜔𝑟𝑟𝑟𝑟

   𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  ,      𝑖𝑖𝑖𝑖 𝜔𝜔𝑟𝑟𝑟𝑟 > max( 𝜔𝜔𝑟𝑟𝑟𝑟,𝜔𝜔𝑠𝑠𝑠𝑠)⎭
⎬

⎫
 

Although interaction motifs are defined at the level of communities, the motifs can 

be mapped and an analogous score for individual brain regions can be calculated. 

Given a region i’s community assignment 𝑧𝑧𝑖𝑖, its connection density to a community 

r is given by  

                                              𝑎𝑎𝑖𝑖𝑖𝑖 =  1
𝑛𝑛𝑟𝑟
∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑗𝑗∈𝑟𝑟                                                                  (3.13) 

Then the regional assortativity score is given by: 

                                           𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟≠𝑧𝑧𝑖𝑖
𝑎𝑎𝑖𝑖𝑖𝑖                                                   (3.14) 

 

While calculating both regional and community assortativity scores, singleton 

communities have been excluded (Betzel , Medgalia , & Bassett, 2018).  

 

3.2.8.  Diversity Index  

In addition to studying interaction motif classes (assortative, core, periphery, 

disassortative), for each motif class, we calculate how frequently it appears among 

community r’s interactions. For a k community partition, community r participates 

in k – 1 interaction. The frequencies of appearance can be expressed as 
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probabilities, 𝑃𝑃𝑎𝑎, 𝑃𝑃𝑐𝑐 ,𝑃𝑃𝑝𝑝, and 𝑃𝑃𝑑𝑑 (“assortative”, “core”, “periphery”, “disassortative”) 

and we can then calculate the entropy as: 

        𝐻𝐻𝑟𝑟 =  −�𝑃𝑃𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑎𝑎 +  𝑃𝑃𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑐𝑐 +  𝑃𝑃𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑝𝑝 +  𝑃𝑃𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑑𝑑�                                 (3.15) 

The entropy or Diversity Index is 0 if the community (r) participates in only one 

class and is maximized if r participates in all classes equally (Betzel, Bertolero, & 

Bassett, 2018). The resulting score is then assigned to all the nodes 𝑖𝑖 ∈ 𝑟𝑟. We 

calculate this for all k communities and estimate mean diversity index by averaging 

across communities.  

3.2.9. Morphospace analysis 

We adopt this analysis from (Betzel , Medgalia , & Bassett, 2018). A morphospace 

is a hyperspace whose axes represent the features of the organism or a system. 

Network morphospace represents the topological properties of a network and helps 

visualize the richness of the topology (McGhee, 2006). In this study, we construct 

a community morphospace, whose axes are within-community (𝜔𝜔𝑟𝑟𝑟𝑟 ,𝜔𝜔𝑠𝑠𝑠𝑠) and 

between-community densities (𝜔𝜔𝑟𝑟𝑟𝑟). Each point in the morphospace represents a 

pair of communities, r, and s.  

 

3.2.10. Ethics statement 

 The COBRE (The Centre for Biomedical Research Excellence) dataset was 

obtained through the International Neuroimaging Data-sharing initiative 

(http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html). This was originally 

released under Creative Commons Attribution Non-Commercial.   
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3.3. Results  

We report on how the community architecture and temporal characteristics of 

functionally connected brain networks can be used as a characterization tool for 

common mental disorders. The community architecture was assessed using the 

weighted stochastic block model (WSBM) to uncover the meso-scale community 

structure from static functional connectivity over the entire time course (see 

methods section). The WSBM uncovers both assortative and non-assortative 

community structures (Aicher , Jacobs , & Clauset, 2015). We used three network 

topology measures that indicate each brain area's participation in assortative, core, 

or peripheral community interactions (Betzel, Bertolero, & Bassett, 2018) and 

demonstrate their distinctness across common mental disorders. Temporal 

properties were studied using the temporal stability of brain networks that are 

functionally relevant, employing methods developed earlier (Sastry, Roy, & 

Banerjee, 2023). First, we captured the temporal fluctuations of dynamic functional 

connectivity with angular distance and construct a temporal landscape using 

temporal stability matrices. This was followed by the computation of entropy and 

global temporal distance, which quantifies the informational content in these 

matrices and serves as a defining characteristic for different mental health 

disorders such as schizophrenia, ADHD, and bipolar disorder. The first section 

presents the results of the community architecture analysis, second section 

presents results of temporal stability analysis for dataset 1 (Poldrack, et al., 2016) 

across various mental health disorders, including schizophrenia, ADHD, and 

bipolar disorder. To ensure validity and robustness, we repeat the entire pipeline 

on dataset 2 (Bellec, 2016) and demonstrate the results specifically for participants 

with schizophrenia in the third section. 
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Figure 3.2 An overview of the community architecture differences between 
schizophrenics and healthy controls in Dataset 1 (A) shows the static functional 
connectivity matrices of schizophrenics and healthy controls, with brain areas 
ordered by communities (B) presents the partition of cortical regions into 7 
communities using the Weighted Stochastic Block Model (WSBM), a generative 
community detection algorithm that groups stochastically equivalent brain regions 
into communities (C) each pair of communities (r and s) is classified into one of 
three community motifs: assortative, coreness, and peripheryness. The diversity 
index is calculated as the average across all brain regions per subject. The violin 
plots indicate that in schizophrenics, communities are less assortative (D) 
illustrates the construction of a network morphospace using all pairs of 
communities, which are coloured according to their motif type: blue for assortative 
community interactions and green for core or periphery community interactions. 
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3.3.1. Distribution of community architecture of brain networks across common 

mental disorders  

The organization of neural elements into motifs, communities, and clusters –

collectively comprise the meso-scale structure of the brain and, and in turn drive 

the complex inter-community interactions that enrich the diverse functional 

connectome (Betzel , Medgalia , & Bassett, 2018). In this section, we investigate 

the differences in community structure and interactions, between cohorts of 

common mental health disorders - schizophrenics/ ADHD / bipolar and healthy 

controls.  

First in Dataset 1, for each subject in both diseased and healthy cohort, we fit a 

weighted stochastic block model (WSBM) on the adjacency matrix computed from 

FC (see Methods for details on WSBM and network construction). Here, we report 

results for the fittings in which the number of communities were considered at k=7. 

Earlier studies, using clustering algorithms (Allen E. , et al., 2014), WSBM (Tooley 

, Bassett, & Mackey, 2022) report optimal solution at k=7 which guided us to set 

the specific value.  Figure 3.2A depicts the community partitions in FC observed 

for both diseased and healthy individuals. Figure 3.2B depicts a topographic 

representation of communities detected with WSBM and their assignment for given 

brain areas, in individuals with schizophrenia, ADHD, bipolar disorders and healthy 

controls. As expected, brain areas were distinctly assigned to different communities 

in diseased and healthy controls (Figure 3.2B). Community motifs represent 

interactions among pairs of communities. The interactions can be – assortative, 

core or periphery community interactions. In assortative communities, the internal 

density of connections within subnetworks exceeds their external density whereas 

core-periphery organization consists of a central core which is connected to the 
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rest of the subnetworks and peripheral nodes connect to the core but not with each 

other (Betzel, Bertolero, & Bassett, 2018).   Here in the main manuscript, we report 

only significant group-level community interaction measures averaged across 

communities. Figure 3.2C reports significantly lower assortativity in schizophrenics 

(P=0.0121, t=2.5374) compared to healthy controls. The distributions were 

parametric and unpaired t-test was used to assess significance.  Rank sum test 

(the distribution was non-parametric) revealed a significantly higher coreness in 

schizophrenics (P=0.0188) compared to healthy counterparts. In addition to this, 

we mapped the motif participation index for individual brain areas and compute the 

diversity index (see methods) – measuring the entropy across each brain area’s 

motif participation. Figure 3.2C reveals a significantly higher diversity index in 

schizophrenics (unpaired t-test, P=0.0354, t = -2.1207) indicating communities in 

schizophrenics, by and large, participate in more than one motif class. Although we 

see distinct modifications in community interaction motifs for both Bipolar and 

ADHD (see supplementary A 3.1) participants in comparison to healthy controls, 

the results were non-significant. Next, we construct a 3D community morphospace 

– each point in the morphospace represents a pair of communities {r,s}, and the 

axes are defined by within-community and between-community densities, 𝜔𝜔𝑟𝑟𝑟𝑟 , 

𝜔𝜔𝑟𝑟𝑟𝑟 , 𝜔𝜔𝑠𝑠𝑠𝑠 . Morphospace allows us to investigate how the community interactions 

generate assortative and non-assortative architecture. We compared 

morphospace constructed for both diseased and healthy controls – individuals with 

schizophrenia, ADHD and bipolar disorder favoured fewer assortative but included 

more core-periphery community interactions than healthy controls (Figure 3.2D). 

Overall, the community motifs and morphospace analysis indicate community 
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structure in common mental disorders, especially in schizophrenics is less 

assortative.  

Next, to identify disease-specific assortativity changes in brain regions, we 

calculate an analogous assortativity score for each brain region (see methods) 

(Betzel , Medgalia , & Bassett, 2018). We performed this analysis in patients with 

schizophrenia, ADHD and bipolar disorders from Dataset 1. To identify disease-

specific changes in region-wise assortativity, we first generate age-matched, sex-

matched healthy controls for each of the disease groups. For each brain region, 

we perform a t-test between assortativity scores of patients and matched healthy 

controls with age and sex regressed out. For schizophrenics, assortativity 

decreased significantly in peripheral visual, Dorsal attention, Ventral attention, and 

Temporal parietal networks (Table 3.2) whereas for individuals with ADHD, 

assortativity decreased significantly in central visual, limbic, dorsal attention, 

default, and control networks (Table 3.4). In individuals with bipolar disorder, 

significant assortativity reduction was seen in dorsal and ventral attention, limbic 

and default networks (Table 3.3). Figure 3.3A-C shows brain-wide topography of 

significant assortativity scores between patients with ADHD, bipolar disorder, 

schizophrenia and healthy controls. 
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Figure 3.3 Profile of brain regions showing significant difference in 
assortativity between patients, age and sex matched healthy controls (A) 
ADHD (B) bipolar disorder (C) Schizophrenia. 
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Figure 3.4 An overview of the temporal stability differences between 
schizophrenia and healthy controls in Dataset 1 (A) showcases the Time X 
Time temporal stability matrices, visualized as the 'Temporal landscape'. Each 
entry represents the angular distance between dominant dFC subspaces at time 
points 𝑡𝑡𝑥𝑥 and 𝑡𝑡𝑦𝑦, for patients with schizophrenia and healthy controls. In 
schizophrenics, there is a global spread of shorter-lived, low angular distant (yellow 
hue) repeated patterns of stability (B) focuses on quantifying temporal stability 
across the entire Time X Time temporal landscape using entropy (C) quantifies 
temporal stability over successive time points using global temporal distance. Both 
measures indicate low temporal stability in schizophrenics (D) global temporal 
distance is estimated for all the resting state networks defined in the Schaeffer 
atlas, comparing schizophrenics (purple) and healthy controls (orange). 
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Table 3.2 Region wise significant assortativity differences in patients with 
schizophrenia, age and sex matched healthy controls   

Brain regions 
(ROI number) Controls Patient P value 

Peripheral visual (14) 0.933333 0.886667 0.02618 

Peripheral visual (16) 0.926667 0.9 0.03743 

Peripheral visual (217) 0.926667 0.886667 0.03239 

Peripheral visual (222) 0.94 0.906667 0.0004645 

Dorsal attention A (62) 0.93 0.913333 0.04117 

Dorsal attention A (65) 0.926667 0.926667 0.004987 

Dorsal attention A (69) 0.943333 0.903333 0.02541 

Ventral attention/ (88) 
Salient network 

0.946667 0.916667 0.01481 

Ventral attention/(101) 
Salient network 

0.933333 0.933333 0.01064 

Temporal parietal (395) 0.913333 0.873333 0.007664 
 

Table 3.3 Region wise significant assortativity differences in patients with bipolar 
disorder, age and sex matched healthy controls   

Brain Region 
(ROI number) Controls Patients P value 

Dorsal attention B (75) 0.92517 0.921769 0.04821 

Ventral attention B (101) 0.918367 0.908163 0.04906 

Limbic B (113) 0.880952 0.918367 0.001511 

Default A (149) 0.911565 0.918367 0.04192 

Default A (159) 0.911565 0.908163 0.01705 

Default B (173) 0.914966 0.897959 0.0275 
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Table 3.4 Region wise significant assortativity differences in patients with ADHD, 
age and sex matched healthy controls   

Brain Regions 
(ROI number) Control Patient P value 

Central visual (7) 0.9 0.933333 0.02668 

Dorsal attention B (84) 0.904167 0.870833 0.02501 

Limbic A (118) 0.866667 0.866667 0.04766 

Control A (127) 0.941667 0.9375 0.02998 

Control B (142) 0.9 0.925 0.04677 

Default A (162) 0.891667 0.858333 0.02264 

Default C (191) 0.916667 0.883333 0.03971 

Default C (194) 0.870833 0.85 0.04202 

Somatomotor A (227) 0.929167 0.9 0.04864 

Limbic A (324) 0.870833 0.875 0.04558 

Control A (331) 0.9125 0.9 0.02631 
 

3.3.2. Impaired and preserved patterns of temporal stability in common mental 

disorders: schizophrenia, ADHD and bipolar 

To compute the temporal stability of dFC, the first step involved estimating the 

similarity/differences between dominant dFC subspaces by calculating the angular 

distance between them ((𝜙𝜙 �𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦�, see equation 4, Methods). The resulting 

temporal stability matrix, spanning time X time, characterizes the collective 

temporal characteristics of dFC and aids in visualizing the temporal landscape. A 

low angular distance between subspaces indicates that the corresponding dFC 

patterns were similar in configuration, while a high angular distance suggests 

dissimilarity (Sastry, Roy, & Banerjee, 2023). In this section, we present the results 
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of evaluating temporal stability changes between healthy controls and cohorts with 

common mental disorders (such as schizophrenia, ADHD, and bipolar disorder) in 

Dataset 1.  

Group-level averages of temporal stability, computed on resting state fMRI BOLD 

time series from healthy controls and individuals with schizophrenia, are reported 

in Figure 3.4A. In schizophrenics, a global spread of shorter-lived, low angular 

distant (yellow hue) repeated patterns of stability was observed. Conversely, 

healthy controls exhibited a more evenly distributed, repeated pattern of stability. 

To quantify these differences across the entire landscape, we calculated the 

entropy of temporal stability matrices. Figure 3.4B illustrates the higher entropy of 

temporal stability matrices in schizophrenics compared to healthy controls, 

indicating impaired temporal stability in individuals with schizophrenia. The 

distributions were assessed parametrically using the Jarque-Bara test and 

D’Agostino-Pearson omnibus test. A two-sample t-test revealed significant 

differences in entropy values between healthy controls and individuals with 

schizophrenia (P=0.0475, t=-1.9963). Next, to quantify stability differences over 

successive time windows, we calculated the global temporal distance (see 

Methods for details). Although the results (Figure 3.4C) were not statistically 

significant (Wilcoxon rank-sum test, P=0.8902), the violin plots suggest a trend: 

individuals with schizophrenia exhibit higher global temporal distance compared to 

healthy controls. Furthermore, for each of the 8 resting state networks (RSNs) 

defined in the Schaeffer atlas (Schaefer , et al., 2018), we estimated the dominant 

dynamic functional connections (dFC) and constructed temporal stability matrices 

for participants in both the schizophrenia and healthy control groups. Additionally, 

we calculated entropy (see Supplementary, A 3.3A) and global temporal distance 
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(Figure 3.4C) specific to the 8 resting state networks (Control, Dorsal attention, 

Default, Limbic, Somatomotor, Temporal parietal, Ventral attention, and Visual 

networks). Figure 3.4D shows significantly higher global temporal distance in 

individuals with schizophrenia in two networks: 1) Dorsal attention network, 

indicating significantly lower temporal stability in schizophrenics (P=0.0153, t=-

2.4489) (The distributions were assessed parametrically using an unpaired two-

sample t-test) and 2) Somatomotor network, indicating significantly lower temporal 

stability in individuals with schizophrenia (P=0.0109) (The distributions were non-

Gaussian; hence, the Wilcoxon rank-sum test was used).Overall, these results 

indicate impaired temporal stability in individuals with schizophrenia, both at the 

whole-brain level and within specific networks.  

Next, we investigate changes in temporal stability in patients with other common 

mental disorders, including ADHD, Bipolar disorder, and healthy controls from 

Dataset 1. Firstly, for each participant, we construct whole-brain temporal stability 

matrices by estimating 𝜙𝜙 �𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦� across all timepoints. Figure 3.5A illustrates the 

temporal landscape of participants with ADHD and Bipolar disorder. The results 

indicate a minimal spread of low angular distant (yellow hue) and repeated patterns 

of stability in both ADHD and Bipolar disorder. We observed significantly lower 

entropy in participants with ADHD (two-sample t-test, P=0.0162, t=-2.4293), while 

global temporal distance was significantly higher (Wilcoxon rank-sum test, 

P=2.2128e-21), indicating impaired temporal stability in patients with ADHD (Figure 

3.5B). In the case of bipolar disorder, our results indicate high entropy (two-sample 

t-test, P=0.3467, t=0.9436) and global temporal distance (two-sample t-test, 

P=0.8892, t=0.1395) in temporal stability matrices, although these findings were 

not statistically significant. 
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Figure 3.5 An overview of the temporal stability differences in participants 
with ADHD and Bipolar disorder (A) showcases the Time X Time temporal 
stability matrices, where each entry represents the angular distance between 
dominant dFC subspaces at time points 𝑡𝑡𝑥𝑥 and 𝑡𝑡𝑦𝑦, for participants with ADHD and 
Bipolar disorder. The temporal stability is quantified using two measures: entropy 
(B) and global temporal distance (C) in patients with ADHD and healthy controls. 
The results show that global temporal distance is significantly higher in participants 
with ADHD, indicating decreased temporal stability. Similarly, temporal stability is 
quantified using entropy (D) and global temporal distance € in participants with 
bipolar disorder and healthy controls. 

 

3.3.3.  Validation Analysis 

Furthermore, we replicated the entire analysis pipeline using Dataset 2. Firstly, at 

the single-subject level, we identified communities by fitting the weighted stochastic 

block model (WSBM) to adjacency matrices obtained from static functional 

connectivity (FC) (see Supplementary, A 3.2A). We investigated community 

interaction motifs and found that assortativity was significantly lower in individuals 

with schizophrenia (Wilcoxon rank-sum test; P=0.0483) compared to their healthy 

counterparts, while coreness (Wilcoxon rank-sum test; P=0.0209) and 

peripheryness (Wilcoxon rank-sum test; P=0.0043) were significantly higher. The 
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diversity index was also significantly higher in individuals with schizophrenia 

(Wilcoxon rank-sum test, P =0.0184) (A 3.2B), indicating that brain areas 

participate in more than one motif class. Additionally, we constructed a 3D 

community morphospace, where the axes were defined by within-community and 

between-community densities, 𝜔𝜔𝑟𝑟𝑟𝑟 , 𝜔𝜔𝑟𝑟𝑟𝑟 , 𝜔𝜔𝑠𝑠𝑠𝑠  . Our results with the morphospace 

(A 3.2C) demonstrated that communities in individuals with schizophrenia favoured 

fewer assortative interactions compared to healthy controls, thus validating our 

findings from Dataset 1, specifically in patients with schizophrenia. Next, we 

construct temporal stability matrices (Figure 3.6A) and calculate entropy and global 

temporal distance for individuals with schizophrenia and healthy controls. Figure 

3.6B reports significantly higher entropy in individuals with schizophrenia 

(P=0.0373) compared to healthy controls. The distributions were non-parametric 

(normalcy test performed with Jarque-Bara test, and significance tested with 

Wilcoxon rank-sum test). Global temporal distance (Figure 3.6C) was also 

significantly higher in individuals with schizophrenia compared to healthy controls 

(Wilcoxon rank-sum test; P=2.5559e-04). Both the entropy and global temporal 

distance results indicate impaired temporal stability in individuals with 

schizophrenia, thus validating our initial findings from Dataset 1. At the network 

level analysis (Figure 3.6D), we observe significantly higher global temporal 

distance in individuals with schizophrenia in the Control network (P=5.5055e-04), 

Dorsal attention network (P=0.0057), Default network (P=0.0048), Somatomotor 

network (P=8.021e-04), Temporal-Parietal network (P=0.0106), and Ventral 

attention network (P=0.0042). The distributions were non-parametric, and 

significance was tested with the Wilcoxon rank-sum test. 

 



Temporal stability of res�ng state func�onal connectome across common mental disorders 

Page | 88 
 

 

 

 

Figure 3.6 An overview of the temporal stability differences between 
individuals with schizophrenia and healthy controls in Dataset 2. (A) 
illustrates the temporal stability matrices, visualized as a temporal landscape, for 
both schizophrenics and healthy controls. Each entry in the matrix represents the 
angular distance between dominant dFC subspaces at time points 𝑡𝑡𝑥𝑥 and 𝑡𝑡𝑦𝑦. The 
angular distance ranges from 0 (indicated by yellow hue) to π/2 (indicated by red 
hue) (B) quantifies the temporal stability across the entire temporal landscape 
using entropy (C) quantifies the temporal stability over successive time windows 
using global temporal distance. Both measures indicate a decrease in temporal 
stability in schizophrenics, which aligns with the findings from Dataset 1. (D) 
estimates the global temporal distance for each of the resting state networks 
defined in the Schaeffer atlas for both individuals with schizophrenia (purple) and 
healthy controls (orange). The plots demonstrate a significant decrease in temporal 
stability in schizophrenics, particularly in the control, dorsal attention, default, 
somatomotor, temporal parietal, and ventral attention networks. 
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3.4. Discussion  

The current study aimed to explore the potential of dFC measures as 

characterizing tools for common mental disorders, including schizophrenia, ADHD, 

and bipolar disorder. Our findings revealed interesting insights into the 

spatiotemporal architecture of the dynamic functional connectome. Firstly, we 

utilized two datasets of individuals with common mental health disorders (total 

N=408 participants) to investigate differences in the community structure of the 

functional connectome. We employed a generative model-based community 

detection algorithm, weighted stochastic block model (WSBM) (Aicher , Jacobs , & 

Clauset, 2015) to identify communities and map their interactions into assortative, 

coreness, and peripheryness motifs. Our findings indicate that in individuals with 

schizophrenia, communities participate in more than one community motif and 

exhibit lower assortativity compared to healthy individuals (Figure 3.2 and 

supplementary A 3.2). Moreover, when comparing across diseases with age and 

sex-matched healthy controls, we identified specific brain areas that showed 

significant differences in assortativity (Figure 3.3). While our findings revealed 

altered community interactions in individuals with ADHD and bipolar disorder (see 

supplementary A 3.1), these differences did not reach statistical significance. To 

address this limitation we went beyond modifications in the  community structure 

and investigated alterations in the dynamic functional connectome across these 

disorders by employing a novel methodology proposed by (Sastry, Roy, & 

Banerjee, 2023).This approach leverages the dynamic nature of functional 

connectivity to construct a temporal landscape and assess the temporal stability of 

resting-state dFC in participants with ADHD, bipolar disorder, schizophrenia, and 

healthy controls. We used entropy and global temporal distance as measures of 
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temporal stability. Our results demonstrated a significant increase in entropy of the 

whole-brain temporal landscape and specific resting-state networks (such as the 

dorsal attention and somatomotor networks) in individuals with schizophrenia, 

indicating decreased temporal stability of dFC. We extended our analysis to include 

participants with ADHD and bipolar disorder, revealing a significant decrease in 

temporal stability among ADHD participants (Figure 3.5). Notably, both the 

temporal stability and community architecture differences in individuals with 

schizophrenia were consistent across the two datasets used (Figure 3.6). 

Using two resting-state fMRI datasets (Total N=408), the current study investigated 

the differences in community structure between individuals with mental disorders 

(schizophrenia, ADHD, bipolar disorder) and healthy controls. Earlier studies have 

reported alterations in community structure in common mental disorders, 

particularly in schizophrenia. (Alexander-Bloch, et al., 2010) reported decreased 

modularity in functional brain networks in individuals with schizophrenia. (Lerman-

Sinkoff & Barch , 2016) using NMI, identified significant differences in community 

structure between healthy controls and individuals with schizophrenia, with 

subcortical, auditory, and somatosensory networks being major contributors to 

these changes. However, previous studies on the community structure of resting-

state functional connectivity (FC) in individuals have been limited by 

methodological biases associated with modularity maximization and infomap 

techniques, which are designed to uncover only assortative communities (Betzel , 

Medgalia , & Bassett, 2018). In this study, we used the weighted stochastic block 

model (WSBM), a data-driven generative community detection algorithm capable 

of uncovering assortative and non-assortative communities at the mesoscale level 

(Betzel , Medgalia , & Bassett, 2018). As expected, WSBM uncovered distinct 
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communities in diseased and healthy controls (Figure 3.2B and A 3.2A). In our 

analysis, we classified community interactions into assortative, core, and periphery 

motif classes. Our results demonstrated that communities in individuals with mental 

disorders, particularly schizophrenia, exhibited significantly less assortativity, 

higher coreness and peripheryness (Figure 3.2C, Figure 3.2D and A 3.2) compared 

to healthy controls. The Diversity Index, a motif participation index, was 

significantly higher in individuals with schizophrenia, indicating that communities 

participated in more than one motif class (Figure 3.2C and A3.2 B). Our research 

has revealed significant changes in assortativity at the regional level in three 

common mental health disorders: schizophrenia, bipolar disorder, and ADHD. 

These findings offer potential evidence for the underlying neuropathological 

profiles of these diseases. Previous studies in schizophrenia, investigating 

modularity have identified disruptions in modular structure in sensory, auditory, and 

visual areas (Bordier , Nicolini , Forcellini , & Bifone , 2018), right insular and 

perisylvian cortical areas (Alexander-Bloch , et al., 2012). In line with these studies, 

our findings in schizophrenia show significantly lower assortativity in communities 

associated with peripheral visual, dorsal and ventral attention, and temporal 

parietal networks (Figure 3.3C) (Table 3.2). (Lin , et al., 2014) reported decreased 

brain network integration and increased network segregation in ADHD patients, 

along with significant alterations in local clustering coefficients in cerebellar, frontal, 

motor, and temporal regions. In our study, we found significant alterations in 

assortativity in brain areas belonging to central visual, limbic, default, and 

somatomotor networks in ADHD patients (Figure 3.6A) (Table 3.4)Studies on 

bipolar disorder have identified alterations in brain network topology in 

frontoparietal and limbic networks (Zhang , et al., 2021). Similarly, our findings 
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indicate significantly lower assortativity in brain areas associated with the default 

and dorsal attention networks, as well as limbic networks, in bipolar disorder 

patients (Figure 3.3B) (Table 3.3). Overall, these region-level alterations align with 

previous studies and suggest that alterations in community structure play a role in 

the neuropathology of common mental health disorders. Although we attempted to 

replicate our community detection and interaction motif analysis in patients with 

ADHD and bipolar disorder, our results did not yield statistical significance. We 

hypothesized that the lack of statistical significance in our results, along with the 

relatively small number of participants, could be attributed to the dependency of 

most community detection algorithms on static functional connectivity. (Preti, 

Bolton, & De ville, 2017) have highlighted the limited scope of static functional 

connectivity and its inability to fully capture the dynamic nature of brain activity. To 

explore the dynamic characteristics of the resting-state dynamic functional 

connectome and its alterations in common mental disorders, our study focused on 

estimating the temporal stability of these dynamic patterns. In this study, along with 

a companion report (Sastry, Roy, & Banerjee, 2023), we employed a methodology 

where, at each timepoint, we first extracted dominant dynamic functional 

connectivity (dFC) patterns and projected them into dFC subspaces using PCA. 

We then assessed the similarity of these patterns by calculating the angular 

distance between the subspaces (Figure 3.1C). We introduce two measures to 

quantify temporal stability: 1) Entropy, which estimates temporal stability across 

the entire temporal landscape and all time points, and 2) Global temporal distance, 

which measures temporal stability across successive time points. While previous 

studies have explored regional variations in temporal stability (Zhang , et al., 2016) 

(Dong , et al., 2019), our study extends this exploration by quantifying temporal 
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stability at both the whole-brain and brain network level.  Our key finding is a 

significant decrease in temporal stability among individuals with schizophrenia, 

both at the whole-brain and network levels. Our results in both Dataset 1 and 

Dataset 2 indicate increased entropy (Figure 3.4B) (Figure 3.6B) and global 

temporal distance (Figure 3.4C) (Figure 3.6C) of the whole-brain functional 

connectome in individuals with schizophrenia, which suggests impaired temporal 

stability. Our findings also indicate impaired temporal stability in individuals with 

schizophrenia in several networks, including the dorsal attention, Somatomotor, 

limbic, ventral attention, control, and temporal-parietal networks (Figure 3.4D and 

Figure 3.6D). These results are consistent with previous studies that have 

investigated the regional temporal variability of dFC in schizophrenia. (Zhang , et 

al., 2016) found that patients with schizophrenia exhibited significantly increased 

temporal variability (decreased temporal stability) of dFCs in subcortical regions, 

such as the thalamus, palladium, and visual areas during resting state. Similarly, 

(Dong , et al., 2019), (Gifford , et al., 2020) and (Long , et al., 2020) using flexibility 

measures, observed significant impairment in temporal stabilities of dFC in multiple 

brain areas, including the thalamus, visual areas among individuals with 

schizophrenia.  In line with these previous studies, our results showing significant 

impairment in temporal stability of dFCs at both the whole-brain and network level 

contribute to a better understanding of the temporal stability differences observed 

in schizophrenia. ADHD is characterized by dynamic reconfiguration of the 

functional connectome (Lin , et al., 2014) (Fair , et al., 2010) . (Zhang , et al., 2016) 

(Castellanos , et al., 2008) report increased temporal variability (decreased 

stability) in default-mode network and lower temporal variability in subcortical 

regions in patients with ADHD. Our findings show a significant increase in the 



Temporal stability of res�ng state func�onal connectome across common mental disorders 

Page | 94 
 

 

global temporal distance of whole-brain functional connectome in patients with 

ADHD, suggesting decreased temporal stability of whole-brain dFCs (Figure 3.5B). 

Similar to schizophrenia and ADHD, there are multiple studies on temporal stability 

modifications in bipolar disorder patients that report shared similarities in temporal 

stability alternations with schizophrenia (Long , Lu, & Liu, 2023) (Han , et al., 2020) 

(Nguyen , et al., 2017). Although our results show changes in temporal stability in 

individuals with bipolar disorder, the results were not statistically significant. 

Overall, these findings in common mental health disorders, validated across two 

datasets, especially in schizophrenia, point to a significant widespread decrease in 

the temporal stability of dFCs both at the whole-brain and network levels. Our 

results further suggest that these widespread alterations in dynamic functional 

network configurations, captured by dynamic measures such as temporal stability, 

provide a comprehensive representation of brain dynamics and reflect the dynamic 

nature of mental disorders. They may serve as a more promising potential 

biomarker for common mental health pathologies. 

It is important to note a few methodological limitations of the present study. The 

generative community detection algorithm, WSBM, used in this study requires that 

the number of communities, K, be specified by the user. Accordingly, because the 

simulations are time and memory intensive, based on evidence from earlier 

studies, (Tooley , Bassett, & Mackey, 2022) (Allen E. , et al., 2014) we reasonably 

chose to run the simulations for K=7. Our results are limited in part, by the length 

of fMRI scan sessions as well. In both datasets, the scan durations are ~5 mins 

and there were relatively few timepoints (150 volumes) which may restrict dynamic 

functional connectivity estimation. A meaningful extension of the present work 

would be to investigate the potential of temporal stability to be used as a ‘feature’ 
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in classifying common mental health disorders by building unsupervised 

classification algorithms.  

 

3.4.1. Conclusion 

This study highlights the significance of dynamic functional connectivity (dFC) and 

temporal stability in characterizing common mental disorders. While the community 

architecture of functionally connected brain networks, assessed using the weighted 

stochastic block model (WSBM), shows discernible patterns between individuals 

with mental disorders and healthy controls, the study faced challenges in clearly 

distinguishing between different disorders. The measurements of assortativity, 

coreness, and motif participation index provide valuable insights into community 

interactions but did not result in distinct separation between disorders. However, 

temporal stability analysis, through angular distance, global temporal distance and 

entropy calculations, uncovers impaired stability in schizophrenia and ADHD, while 

bipolar disorder shows notable differences. These findings underscore the crucial 

role of dFC and temporal stability in understanding and characterizing common 

mental disorders, offering potential insights into their underlying mechanisms and 

potential diagnostic markers. 
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Chapter 4 
Towards translational low-field 
neuroimaging 
 

4.1 Introduction  

Magnetic resonance imaging (MRI) has been revolutionary in brain research, 

offering non-invasive, high-resolution neuroimaging with versatile soft-tissue 

contrast. MRI stands as a prominent tool for non-invasive evaluation of human 

anatomy and physiological processes, particularly in brain assessment. The 

continuous evolution of imaging technology (Sejowski , Churchland , & Movshon , 

2014), coupled with refined analysis techniques and the widespread sharing of 

data (Poldarck, et al., 2017), has propelled significant advancements in 

comprehending both the structure and function of the brain (Park & Friston , 2013). 

This knowledge extends to both healthy states and pathological conditions, 

fostering a deeper understanding of neurological complexities (Fornito , Zalesky , 

& Breakspear, 2015). However, despite these achievements, the complete 

realization of MRI's clinical potential remains pending. A key hindrance is the 

considerable size of MRI scanners and their reliance on intricate infrastructures, 

rendering them financially prohibitive to establish and operate. Consequently, this 

limitation hampers the widespread integration of MRI technology in regions with 

limited resources, such as low- and middle-income countries (LMIC), where the 

prevalence of neurological disorders is high (IAEA, 2021). Furthermore, the 

utilization of MRI for bedside scanning of critically ill patients is also impeded. 

Addressing this challenge would not only promote equitable healthcare access 
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globally but also open avenues for expedited diagnosis and treatment in critical 

cases. Recognizing these barriers and actively seeking solutions for portable and 

cost-effective MRI technology could significantly extend its reach, offering 

transformative benefits to healthcare systems worldwide. 

Advancements in technology have recently ushered in the era of (ultra-)low-field 

MRI scanners (for example Low-field hyperfine MRI scanners), offering the 

promise of portable imaging solutions at significantly reduced costs (Cooley , et al., 

2021) (sheth , et al., 2021) (O'Rilley , Teeuwisse , De gans , Koolstra , & Webb, 

2021) (Turpin , et al., 2020). These scanners utilize permanent magnets, 

eliminating the need for cryogenic systems and minimizing external power 

requirements. They can be operated using standard power outlets. It is noteworthy 

that the adoption of such systems comes with trade-offs. The magnetic field 

strength of these scanners is notably lower, ranging from 0.050 to 0.080T, in stark 

contrast to the conventional MRI's 1.5-3T. As a result, the achievable image quality 

experiences a corresponding reduction. Furthermore, the extent to which low-field 

imaging data can be correlated to traditional MRI data remains uncertain (O'Rilley 

, Teeuwisse , De gans , Koolstra , & Webb, 2021). This includes its compatibility 

with intricate quantitative analysis techniques that are integral to advanced imaging 

studies. While these novel low-field scanners hold great promise in terms of 

portability and cost-effectiveness, their capacity to produce diagnostically valuable 

images and facilitate rigorous quantitative assessments is an ongoing area of 

exploration. As technological advancements continue and methods for enhancing 

image quality and data comparability are refined, the full potential of (ultra-)low-

field MRI scanners in both clinical and research contexts could be realized (Turpin 

, et al., 2020). 
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Concurrently, recent strides in machine and deep learning have ushered in swift 

and dependable processing of MRI data, automating an array of tasks. These 

encompass aligning scans with templates (Hoffman , Billot , Iglesias , Fischl , & 

Dalca , 2020), segmenting images into distinct tissue classes (Billiot , Robinson , 

Dalca , & Iglesias , 2020) (Insensee, Jaeger , Kohl , Peterson , & Maier-Hein , 

2021) and deriving quantitative characteristics from regions of interest (Henschel , 

et al., 2020). A particularly promising facet of deep learning lies in its ability to 

perform image quality transfer (IQT). This technique achieves super-resolution of 

scans by learning and then transferring information from higher-resolution images 

to their lower-resolution counterparts. IQT has chiefly been utilized to synthesize 

1mm isotropic images from thick-slice clinical scans acquired at 1.5T (Iglesias , et 

al., 2021). Additionally, it has been employed to synthesize submillimetre-

resolution images from 3T scans, capitalizing on information gleaned from ultra-

high-field (7T) imaging (Quiyuan , et al., 2021).The prospects of IQT are immense, 

particularly in enhancing the resolution and quality of low-field scans. This 

advancement can bolster their clinical diagnostic utility both through qualitative 

visual assessment and quantitative processing, facilitating feature extraction. The 

integration of IQT with machine learning methodologies has the potential to 

ameliorate the performance of low-field MRI scans, overcoming some of the 

limitations posed by lower magnetic field strengths (Iglesias , et al., 2021).  

Quantitative imaging encompasses intricate image processing workflows involving 

tasks such as registration, segmentation, and visualization, becoming 

progressively sensitive to potential image artifacts. Consequently, a prerequisite 

for effective quantitative postprocessing is the elimination of image artifacts 

beforehand, enhancing robustness and efficiency. This challenge is particularly 
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pronounced in ultrasound and magnetic resonance imaging (MRI), especially when 

dealing with subtle structures that exhibit signals just above the noise threshold. 

Furthermore, the evolution of quantitative medical imaging necessitates the 

analysis of larger 3-D datasets to discern meaningful discriminants for specific 

pathologies (Mazziotta , et al., 2001). To accommodate this, intricate automatic 

image processing workflows that are impervious to diverse image qualities and 

parameter variations are required (Coupe P. , et al., 2007). Numerous techniques 

have been proposed for preserving edges while denoising images. Widely used 

methodologies encompass Bayesian approaches (Geman & Geman , 1984), 

partial differential equation (PDE)-based methods (Perona P & Malik , 1990) (Rudin 

, Osher , & Fatemi , 1992), robust and regression estimation (Black & Sapiro , 

1999), adaptive smoothing (Saint-Marc, Chen , & Medioni , 1991), wavelet-based 

methods (Donoho & Johnstone , 1994), bilateral filtering (Tomasi & Manduchi, 

1998), and hybrid approaches (Coupe P. , et al., 2007). Recent innovations include 

statistically enhanced averaging schemes that incorporate variable spatial 

neighbourhood strategies. Other strategies involve modelling non-local (NL) 

pairwise interactions from training data or a library of natural image patches (Coupe 

P. , et al., 2008). The focus of this work is on the utilization of the NL-means filter, 

originally introduced by (Baudes , Coll, & More , 2005) (Coupe P. , et al., 2007).The 

NL-means filter exploits the redundancy property of periodic, textured, or natural 

images to eliminate noise. Unlike traditional methods that rely on spatial proximity, 

the weight assigned to averaging voxels in this approach is rooted in the intensity 

similarity of their neighbourhoods to the neighbourhood of the voxel under scrutiny, 

akin to patched-based methodologies. Essentially, the NL-means filter can be 

perceived as an extreme case of neighbourhood filters with an infinite spatial 
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kernel, where neighbourhood intensity similarity replaces point-wise gray level 

similarity as seen in conventional bilateral filtering (Coupe P. , et al., 2008). This 

innovative NL recovery framework amalgamates two pivotal attributes of denoising 

algorithms: edge preservation and noise reduction. 

The objective of this study encompasses two primary goals. Firstly, it aims to tailor 

and execute machine and deep learning-driven image quality transfer techniques, 

such as SynthSR (Iglesias , et al., 2021), on practical hyperfine MR T1w images. 

These empirical images are obtained within the scope of a comprehensive 

international collaboration study funded by the Bill and Melinda Gates Foundation 

(BGMF) (Artificial Intelligence Methods for Low Field MRI Enhancement - INV-

032788). Secondly, the study seeks to adapt and apply data-driven denoising 

algorithms, including the non-local means algorithm, to the empirical hyperfine MR 

T1w images and to devise quality metrics that can quantitatively assess the extent 

of image enhancement achieved through these adapted methodologies. 
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4.2 Materials and Methods 

4.2.1. Participants and Image Acquisition  

4.2.1.1. Empirical dataset  

One of the main objectives of this study is the Low Field MRI (UNITY) Initiative, 

which aims to demonstrate proof-of-concept scalable imaging using a 64mT 

portable MRI scanner in LMIC (Lower- and Middle-income countries) settings. It 

also focuses on developing novel imaging methods and sequences to accurately 

measure neurodevelopmental signatures. 

The Hyperfine Swoop (www.hyperfine.io) MRI system plays a crucial role in this 

initiative. It features a permanent main magnetic field of 64 mT, with a 5 Gauss 

boundary diameter of approximately 5 feet. Despite its low power requirements, 

the system weighs just over 1400 lbs (see Figure 1). The Swoop scanner was 

designed to increase access to MRI, and its motorized platform allows easy 

navigation through hospital corridors, elevators, and patient care areas. The 

compact system stands 59-inches tall and 33-inches wide, weighing 1,400 pounds. 

Imaging sequences include T1, T2, FLAIR, and DWI (with ADC map), all directed 

by a tablet interface. While the Hyperfine Swoop is currently capable of T1, T2, and 

T2-FLAIR weighted anatomical imaging, the analysis in this study has been 

restricted to T1-weighted data, as it provides the best image contrast and quality. 

To demonstrate the potential of enhancing image quality with machine learning 

algorithms, MRI was performed using the 64 mT hyperfine lucy scanner, and data 

was collected from N=13 individuals (see Figure 4.2 A). This data collection 

process is part of an ongoing multi-centre collaboration project involving The Kings 
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College, London, Aga Khan University, Karachi, University of Cape Town, South 

Africa, and National Brain Research Centre, Manesar. 

 
Figure 4.1 Portable Hyperfine 64 mT MR scanner Hyperfine Swoop, the world's 
first portable MR imaging system, is capable of providing neuroimaging at the point 
of care. Its capabilities enable timely diagnosis and treatment of acute conditions 
across various clinical settings. 

 

4.2.1.2. Synthetic dataset 

Brainweb is a synthetic 3-D MR image data simulator (Cocosco C. , Kollokian , 

Kwan, & Evans , 1997) which is often used as a gold standard for the analysis of 

the in-vivo MR data. Here, we generated two phantom T1-w images using SFLASH 

sequence (volume size = 217 X 181 X 181) and Gaussian noise was added to the 

phantom T1-w images at 3 % and at 9% (Figure 4.2 B).   
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Figure 4.2 T1 w MR images used in the study (A) Original 3D MR image or 
“Ground Truth” of two representative participants from the empirical hyperfine 
dataset (B) Original 3D MR image or “Ground Truth” of two simulated T1w images 
from the BrainWeb database with added Gaussian noise at 3% and 9%. 

 

4.2.2. Data Analysis  

4.2.2.1. Image Quality transfer using SynthSR 

Various attempts have been made to bridge the gap between clinical and research 

scans in medical imaging, mainly using super-resolution (SR) and synthesis 

techniques inspired by computer vision. Early SR approaches relied on model-

based methods with limitations in MRI's Fourier-encoded dimensions. Successful 
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SR of MRI has been achieved through machine learning (ML) techniques, including 

classical ML and later deep convolutional neural networks (CNNs). CNNs 

outperformed classical methods, with recent advancements like densely 

connected networks, adversarial networks, and progressive architectures further 

improving results, benefiting downstream analyses like cortical thickness and 

tractography. However, CNNs' adoption in clinical MRI analysis is hindered by the 

need for paired data or HR images during training, often unavailable due to varying 

MRI acquisition protocols across sites. To address this, probabilistic models have 

been proposed, but they underperformed compared to CNNs. To tackle this 

limitation, in this study we use "SynthSR," (Figure 4.3) which uses synthetically 

generated images to train a CNN for reconstructing isotropic scans of reference 

MRI contrasts from thick-slice scans with different resolutions and pulse 

sequences. This approach allows wide applicability without observing real HR 

scans. The effectiveness of SynthSR is validated by analysing various 

neuroimaging tools' performance on reconstructed isotropic scans, including 

segmentation, registration, and cortical thickness. The study emphasizes 

SynthSR's advantages over traditional SR approaches, which rely on image 

similarity metrics for validation, potentially inadequate predictors of downstream 

analysis performance. It concludes by discussing future possibilities and 

applications of SynthSR in medical imaging research. We adapt SynthSR directly 

from the GitHub repository (https://github.com/BBillot/SynthSR). The detailed 

methodology of SynthSR can be obtained at (Iglesias , et al., 2021). 

  

https://github.com/BBillot/SynthSR
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Figure 4.3 Overview of SynthSR pipeline (adapted from (Iglesias , et al., 2021)) 
(A) The utilization of deep convolutional neural networks, exemplified by the 
SynthSR framework, presents a robust approach for enhancing images. In this 
context, the input comprises low-field hyperfine T1-weighted (T1w) MR images. 
The essence of this approach lies in training the convolutional neural network 
(CNN) on simulated T1 images, capitalizing on advanced machine learning 
techniques to achieve image enhancement. (B) In this diagram, the blue arrows 
represent the generative model, facilitating the sampling of random scans at each 
minibatch with GPU implementation. On the other hand, the red arrows connect 
the inputs and regression targets used during training for either super-resolution 
(SR) or joint SR/synthesis. It is important to note that real images are only 
necessary for joint SR/synthesis, and not for SR alone. 
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Figure 4.4 Schematic diagram gives an overview of the NL means 
implementation. The input to the algorithm is either an empirical 3D MR image (a) 
or a phantom 3D MR image generated with BrainWeb database with two different 
noise levels (b). The denoising through NL means algorithm restores the value of 
voxel 𝑥𝑥𝑖𝑖 (in red) with the weighted average of all intensities of 𝑥𝑥𝑗𝑗  in the search 
volume 𝑉𝑉𝑖𝑖, based on the similarities of their intensity neighbourhoods, 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑗𝑗. 
Output of the algorithm is a denoised 3D MR image. 

 

4.2.2.2. Denoising using NL means algorithm  

Denoising is one of the crucial steps to increase the image quality by removing 

noise while keeping the integrity of the relevant image information. The basic 

intuitive, data-independent approach is to restore the intensity value of each image 

voxel by the average of voxels in its spatial neighbourhood (McDonnell, 1981). The 

major drawback of this approach is the blurring of edges/ structures of interest in 

the image. NL means algorithm, a data-dependent approach utilises the 

redundancy property (i.e., any voxel in the image is similar to other voxels that are 
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not necessarily located in its spatial neighbourhood) to remove noise from the 

image (Coupe P. , et al., 2008). In this denoising approach, the intensity similarity 

of the neighbourhood of a voxel with the neighbourhood of the voxel under study 

is used as a major criterion to eliminate/ reduce influence of dissimilar voxels to the 

voxel under study. Figure 4.4 shows the flow chart of the methodology used in the 

manuscript. We implement NL means using ANIMA software. The following are the 

notations used through the manuscript: 

u (𝑥𝑥𝑖𝑖 ) : Intensity at voxel 𝑥𝑥𝑖𝑖   

Ω3 : Grid of the image  

M: Step size of the search volume 𝑉𝑉𝑖𝑖 of the voxel 𝑥𝑥𝑖𝑖 

d: Step size of the local neighbourhood 𝑁𝑁𝑖𝑖 

𝑉𝑉𝑖𝑖 : Cubic search volume centred on voxel  𝑥𝑥𝑖𝑖 of size |𝑉𝑉𝑖𝑖| = (2𝑀𝑀 + 1)3, M  ∈ N 

𝑁𝑁𝑖𝑖 : Cubic local neighbourhood of 𝑥𝑥𝑖𝑖 of size |𝑁𝑁𝑖𝑖| = (2𝑑𝑑 + 1)3, d  ∈ N 

U (𝑁𝑁𝑖𝑖): Vector containing the intensities of 𝑁𝑁𝑖𝑖 

NL (u) (𝑥𝑥𝑖𝑖): Restored value of 𝑥𝑥𝑖𝑖   

w (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗): Weight of voxel 𝑥𝑥𝑗𝑗 while restoring u (𝑥𝑥𝑖𝑖 ) 

In the 3D NL-means filter, the restored intensity NL (u)(𝑥𝑥𝑖𝑖)  of the voxel 𝑥𝑥𝑖𝑖 is the 

weighted average of all voxel intensities in the image u given by the following 

equation: 

𝑁𝑁𝑁𝑁 (𝑢𝑢)(𝑥𝑥𝑖𝑖) =  ∑ 𝑤𝑤�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�𝑢𝑢(𝑥𝑥𝑗𝑗)𝑥𝑥𝑗𝑗∈Ω3                                                   (4.1) 
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where u (𝑥𝑥𝑗𝑗 ) is the intensity of the voxel 𝑥𝑥𝑗𝑗 and w (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)𝜖𝜖 [ 0, 1 ] is the weight of 

voxel  𝑥𝑥𝑗𝑗 while restoring  𝑥𝑥𝑖𝑖, which quantifies the similarity of neighbourhoods 𝑁𝑁𝑖𝑖 

and  𝑁𝑁𝑗𝑗  of the voxels 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗.  

The weight w (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) is computed as follows: 

𝑤𝑤�𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗� = 1
𝑍𝑍𝑖𝑖
𝑒𝑒
−||𝑢𝑢�𝑁𝑁𝑖𝑖�−𝑢𝑢(𝑁𝑁𝑗𝑗)||2,𝑎𝑎

2

ℎ2                                                             (4.2) 

where 𝑍𝑍𝑖𝑖  is a normalization constant ensuring ∑ 𝑤𝑤�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = 1𝑗𝑗 ,  

||. ||2,𝑎𝑎
2  is a classical L2 norm for each voxel 𝑥𝑥𝑗𝑗  in 𝑉𝑉𝑖𝑖 which measures the distance 

between neighbourhood voxel intensities 

h acts as a smoothing parameter controlling the decay of the exponential function 

4.2.2.3. Automatic tuning of the smoothing parameter h 

In optimised NL-means algorithm (Coupe P. , et al., 2008) which allows for tuning 

of the smoothing parameter h, the weight  𝑤𝑤�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� is redefined as: 

 𝑤𝑤�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� = 1
𝑍𝑍𝑖𝑖
𝑒𝑒
−||𝑢𝑢�𝑁𝑁𝑖𝑖�−𝑢𝑢(𝑁𝑁𝑗𝑗)||2,𝑎𝑎

2

2𝛽𝛽𝜎𝜎2|𝑁𝑁𝑖𝑖|                                                                            (4.3) 

where only 𝛽𝛽, the adjusting constant needs to be manually tuned.         

4.2.2.4. Pre selection of voxels in the search volume  

Most relevant voxels 𝑥𝑥𝑗𝑗  in 𝑉𝑉𝑖𝑖 that will have highest weight 𝑤𝑤�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� are preselected 

without having to compute distances between all of U (𝑁𝑁𝑖𝑖) and U (𝑁𝑁𝑗𝑗). Selecting 

most relevant voxels a priori is shown to increase the processing speed of the NL-

means algorithm (Coupe P. , et al., 2008). The pre-selection of voxels is based on 

similarity of neighbourhood intensities. Intuitively similar neighbourhoods have the 
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same mean and same gradient information (Coupe P. , et al., 2008). Therefore, the 

ratio of average intensities of neighbourhood of pixels of 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 is considered 

when computing 𝑤𝑤�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�.𝜇𝜇1<1and 𝜎𝜎2 < 1 are two limiting constants (Mahmoudi & 

Sapiro, 2005). The corresponding neighbourhood with non -zero value of 𝑤𝑤�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� 

would be ‘pre-selected’. The selection test is as follows; 

𝑤𝑤�𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗� = { 1
𝑍𝑍𝑖𝑖
𝑒𝑒
−||𝑢𝑢�𝑁𝑁𝑖𝑖�−𝑢𝑢(𝑁𝑁𝑗𝑗)||2,𝑎𝑎

2

2𝛽𝛽𝜎𝜎2|𝑁𝑁𝑖𝑖|      , if  𝜇𝜇1< 𝑈𝑈(𝑁𝑁𝚤𝚤)��������

𝑈𝑈(𝑁𝑁𝚥𝚥)�������� < 1
𝜇𝜇1

                      

                                    and, (𝜎𝜎2)   < 𝑉𝑉𝑉𝑉𝑉𝑉 (𝑈𝑈(𝑁𝑁𝑖𝑖 ))
𝑉𝑉𝑉𝑉𝑉𝑉 (𝑈𝑈�𝑁𝑁𝑗𝑗�)

  < 
1

(𝜎𝜎2) 
                 (4.4)       

                   0,                              otherwise}               

We vary both 𝛽𝛽 (adjusting constant to tune smoothing parameter h) and (𝜎𝜎2)  ( 

limiting constant for variance of U(𝑁𝑁𝑖𝑖) and U (𝑁𝑁𝑗𝑗)) to understand its influence on 

denoising and select an optimal value for these parameters based on quality 

measures.  All other parameters are set to their default values. 

4.2.2.5. Quality measures  

In assessing any new image acquisition or image reconstruction technique image 

quality assessment plays a vital role. We employ quality measures from two 

families – 1) Quality assessment measuring image compression quality (Lopez, 

Frederick, & Ventura, 2021)  2) Objective assessment computed with mathematical 

algorithms 
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4.2.2.6. Quality assessment measuring image compression quality  

4.2.2.6.1. Peak SNR (PSNR) 

PSNR is the ratio between a signal’s maximum power and the power of the signal’s 

noise. The peak signal-to-noise ratio (PSNR) between two images estimates the 

quality of reconstruction. Here, we estimate the PSNR between the “ground truth” 

(original image) and denoised MR image. In case of empirical data, the ground 

truth is the hyperfine T1 MR image, before denoising. PSNR is defined as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10𝑙𝑙𝑙𝑙𝑙𝑙10 ( 𝑀𝑀𝑀𝑀𝑀𝑀
2

𝑀𝑀𝑀𝑀𝑀𝑀
 )                                                                        (4.5) 

where MAX is the maximum achievable value in the input image, MSE is the mean 

squared error  

4.2.2.6.2. Mean Squared Error  

Mean Squared Error represents the cumulative squared error between ground truth 

and denoised MR image. MSE is defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ [𝐼𝐼1(𝑚𝑚,𝑛𝑛)− 𝐼𝐼2(𝑚𝑚,𝑛𝑛)]2𝑀𝑀,𝑁𝑁
𝑀𝑀∗𝑁𝑁

                                                                                      (4.6) 

where M and N are the number of rows and columns of the input image, 𝐼𝐼1 and 𝐼𝐼2 

are the input images. 

4.2.2.6.3. Structural Similarity Index Measure (SSIM) 

SSIM is an image quality metric that assesses three characteristics of an image: 

luminance, contrast and structure. The overall index is a multiplicative combination 

of three terms described as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑥𝑥,𝑦𝑦) =  [𝑙𝑙(𝑥𝑥,𝑦𝑦)]𝛼𝛼 ∗  [𝑐𝑐(𝑥𝑥,𝑦𝑦)]𝛽𝛽 ∗  [𝑠𝑠(𝑥𝑥, 𝑦𝑦)]𝛾𝛾                                              (4.7) 
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𝑙𝑙(𝑥𝑥,𝑦𝑦) =  2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+ 𝐶𝐶1
𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝐶𝐶1

                                                                                    (4.8) 

𝑐𝑐(𝑥𝑥, 𝑦𝑦) =  2𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦+ 𝐶𝐶2
𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝐶𝐶2

                                                                                         (4.9) 

𝑠𝑠(𝑥𝑥, 𝑦𝑦) =  𝜎𝜎𝑥𝑥𝑥𝑥+ 𝐶𝐶3
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦+𝐶𝐶3

                                                                                             (4.10) 

where 𝜇𝜇𝑥𝑥 , 𝜇𝜇𝑦𝑦, 𝜎𝜎𝑥𝑥 , 𝜎𝜎𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎  𝜎𝜎𝑥𝑥𝑥𝑥 are the local means along x and y dimensions, 

standard deviations along x and y dimensions, and cross-covariance for images x 

and y respectively. The weights 𝛼𝛼,𝛽𝛽, 𝛾𝛾 are set to 1 in this manuscript. 

4.2.2.7. Objective assessment  

Although there is no gold standard for assessing image quality, the objective 

assessment of medical images is divided into three categories: (1) Full reference 

(FR) where there is an ideal reference image for comparison with the test image 

(2) Reduced reference (RR), which consists of partial information of reference 

image and (3) No reference (NR), also known as blind assessment uses inherent 

image characteristics to compute image quality, forgoing the need for a reference 

image (Chow & Paramesran, 2016).No reference (NR) image quality assessment 

techniques are preferred for assessing medical images because there is no perfect 

reference image in the real-world medical imaging (Chow & Paramesran, 2016). 

Here, we use two No reference (NR) image quality assessment techniques as 

quality measures 

4.2.2.7.1. JPEG compression-based image quality analysis 

We applied a no-reference image quality measure (developed by (Wang , Sheikh 

, & Bovik , 2002) adapted for structural MRI images by (Woodard & Carley-
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Spencer, 2006) based on distortions caused by JPEG DCT based lossy 

compression. This method estimates image quality by assessing image blockiness 

and blurring artefacts created during quantization. The software provides three 

image quality measures, all of which are used in the current study: a measure for 

image blockiness, a measure for image blurring and an overall measure of image 

quality. For more details, please refer (Wang , Sheikh , & Bovik , 2002). 

4.2.2.7.2. Image Quality Evaluation (IQE) 

Image Quality Evaluation (Osadebey , Pederson , Arnold , & Wendel-Mitoraj , 

2018) is an objective, no-reference attribute-based quality evaluation for MRI 

images. The technique utilises the statistical properties that describe different 

levels of contrast degradation in MRI images. Each possible level of contrast-

distorted MRI image slice is assigned a unique set of pixel configuration. The 

Quality prediction can be summarised in four steps: (1) extract local contrast 

feature image from the test image (2) compute mean and standard deviation of the 

feature image (3) Standardise the distribution using mean and standard deviation 

computed from the feature image (4) Predict the lightness contrast quality score 

and texture contrast quality score. Lightness contrast quality score is the 

magnitude of perceived visual differences of local structures within the MRI image. 

Texture contrast quality score is the magnitude of details that describe the local 

and anatomical structures within the MRI image in the presence of either blurring 

or noise degradation process.   
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Figure 4.5 Image quality transfer (IQT) using SynthSR on hyperfine dataset. 
Shown here are T1-weighted (T1w) images of two representative individuals both 
before and after undergoing image quality transfer (IQT) using SynthSR. These 
empirical data were acquired on a 64 mT Hyperfine MRI scanner, which is the 
world's first portable MRI scanner. Upon visual examination, the enhancement in 
image quality of hyperfine T1w images after IQT is evident. 
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4.3. Results  

4.3.1. Image Quality Transfer (IQT) using SynthSR 

In this section, we elaborate on the process and outcomes of enhancing the quality 

of hyperfine MR images using the SynthSR technique, which was directly adapted 

and implemented from the GitHub repository. Initially, we conducted training 

sessions of SynthSR using synthetic data, followed by its application to enhance 

real hyperfine MR images acquired from a 64mT coil, serving as our testing 

dataset. To evaluate the capability of the SynthSR method in terms of super-

resolution (SR) performance, we initiated a controlled experiment. For this, we 

utilized synthetically down sampled MP-RAGE scans obtained from a 3T GE 

scanner, provided by Kings College London through Dr. Rosalyn Moran's research 

group. The objective of this initial phase was to assess the method's ability to 

enhance a single volume while considering variations in slice spacing. Subsequent 

to the initial training phase, we proceeded to test the CNN model of SynthSR using 

the designated testing dataset, consisting of real hyperfine T1w images (as 

illustrated in Figure 4.5). Through visual inspection, we were able to observe the 

noticeable improvement in image quality achieved through the Image Quality 

Transfer (IQT) process applied by SynthSR. This enhancement became evident in 

the hyperfine T1w images, thus underscoring the effectiveness of the SynthSR 

approach in enhancing the quality of the acquired hyperfine MR images. 
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4.3.2. Denoising using NL means algorithm  

4.3.2.1. Estimating optimal values for 𝛽𝛽 and (𝜎𝜎2) 

First, in order to select optimal values for 𝛽𝛽 (adjusting constant to tune smoothing 

parameter h) and 𝜎𝜎2(limiting constant for variance of U(𝑁𝑁𝑖𝑖) and U (𝑁𝑁𝑗𝑗)) we run the 

NL means algorithm on a single subject and estimate PSNR, MSE and SSIM .  

Figure 4.6 A shows the influence of 𝛽𝛽 and 𝜎𝜎2 on quality measures. Optimal values 

for 𝛽𝛽 and 𝜎𝜎2 are selected as the ones with highest PSNR, SSIM and lowest MSE. 

The results indicate the best value of 𝛽𝛽 is close to 0.2 and 𝜎𝜎2 is close to 0.5.  With  

𝛽𝛽=0.2 and 𝜎𝜎2 = 0.5, we implement NL means algorithm on empirical dataset and 

validate the same on synthetic dataset. 

 

 

Figure 4.6 Calibration of NL means algorithm and Image quality metrics (A) 
Calibration of β (adjusting constant to tune smoothing parameter h) and σ2 (limiting 
constant for variance of u(Ni) and u(Nj)). We check the influence of β for and σ2 on 
PSNR, MSE and SSIM. PSNR is high for low values of β and σ2, peaking at β =0.2 
and σ2=0.5  
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Figure 4.7 Quantifying the performance of NL means algorithm (A) Quantifying 
the performance of NL means across empirical and synthetic dataset. We estimate 
PSNR, MSE and SSIM for all the available participants of empirical dataset after 
denoising with NL means and validate the same with synthetic dataset. For the 
empirical dataset, we report the results of two participants with highest PSNR. We 
run NL means algorithm with  𝛽𝛽 = 0.2 and  𝜎𝜎2  = 0.5. These results suggest good 
performance of NL means algorithm on the empirical/synthetic dataset. (B) Original 
3D MR image or “Ground Truth” of two simulated T1w images from the BrainWeb 
database with added Gaussian noise at 3% and 9%. 
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Figure 4.8 Before and after NL means. Comparison between Ground truth and 
denoised images after applying NL means algorithm on T1w images: Synthetic 
data with 3% and 9% added Gaussian noise and Empirical data. 

Top: Original Ground Truth T1-w images - Synthetic and empirical  

Middle: Detailed zoomed-in images contrasting ground truth and denoised T1-w 
images of synthetic and empirical data. Denoising is achieved with NL means 
algorithm with adjusting constant of smoothing parameter (𝛽𝛽) = 0.2. Adjusting 
parameter controls the strength of denoising. 

Bottom: Original denoised T1-w images obtained after applying NL means 
algorithm on synthetic and empirical MR images.  
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4.3.2.2. Image Quality Analysis  

4.3.2.2.1. Using image compression quality measures  

Although we have applied the NL Means algorithm on all the available participants 

in the empirical dataset, we present the data of two participants with highest PSNR, 

SSIM and lowest MSE (Figure 4.7). The performance of NL means algorithm is 

quantified with quality measures as shown in Figure 4.7A. For both the participants, 

in the empirical dataset, the algorithm achieved a PSNR > 33 dB indicating a good 

denoising. The MSE and SSIM for the empirical images were also in the magnitude 

of MSE<5.2 x 10-4 and SSIM > 0.95. For the synthetic BrainWeb dataset, two T1 

w images with different levels of gaussian noise (one at 3% and other at 9%) were 

simulated in order to do a quantitative comparison with the empirical dataset 

(Figure 4.7 B). For the synthetic 3D MR images, as expected, the performance of 

the algorithm deteriorated with increase in noise – PSNR for T1w images at 3% 

noise is 37 dB whereas for T1w images at 9% noise is 28 dB (Figure 4.7A). The 

original image or the “Ground truth” of empirical /synthetic images and denoised 

MR images after NL means are shown in Figure 4.8. 
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Figure 4.9 Image quality analysis metrics. Quantifying the performance of NL 
means across empirical and synthetic dataset using two metrics - JPEG 
compression-based image quality analysis (A) and Image quality evaluation (B). 

 

4.3.2.2.2. Using objective assessment measures  

Using JPEG compression-based image quality analysis technique as a quality 

metric 

First, we quantify the performance of the NL means algorithm on synthetic and 

empirical hyperfine MR images with JPEG compression-based quality measures 

as shown in Figure 4.9A. The overall image quality score increased for MR images 

after denoising with NL means algorithm – in both synthetic and empirical MR 

images.   

Using Image Quality Evaluation (IQE) technique as a quality metric 

Next, we applied Image Quality Evaluation (IQE) technique and calculated 

lightness contrast score, texture contrast score and an overall image quality score 

to quantify the performance of the NL means algorithm, on both synthetic and 

empirical MR images. In the synthetic MR images, lightness contrast score 

increased with denoising whereas texture contrast score decreased marginally but 

overall image quality score increased after denoising. In empirical hyperfine MR 



Towards transla�onal low-field neuroimaging 

Page | 120 
 

 

images, lightness contrast score, texture contrast score and overall image quality 

score increased after denoising with the NL means algorithm, indicating a 

reasonable performance of NL means algorithm in denoising and removing noisy 

artefacts from the MR images (see Figure 4.9B). Figure 4.10 presents a visual 

comparison of T1w images for all subjects before and after the application of the 

NL means algorithm. 

 
Figure 4.10 Before and after NL means. Visual comparison of T1w images for all 
subjects before and after the application of the NL means algorithm. 
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4.4. Discussion  

The scope of this study is embedded within a broader international multicentre 

collaborative effort known as the 'Artificial Intelligence Methods for Low Field MRI 

Enhancement' project, which has received funding from the Bill and Melinda Gates 

Foundation (BMGF). This initiative is aligned with the Low Field MRI and 

neurodevelopment initiatives and is aimed at exploring the application of artificial 

intelligence (AI) techniques to optimize the information content and data quality 

acquired through low field MRI systems, particularly the Hyperfine Swoop. In this 

context, the study delves into the utilization of AI-driven methods, specifically image 

quality transfer (Iglesias , et al., 2021), to enhance the content and quality of data 

generated by low field MRI systems. The overarching goal of this low field initiative 

involves both the translation of established techniques and the development of 

innovative imaging methods for deployment on low field MRI systems. This 

initiative acknowledges the potential of low field MRI technology and aims to unlock 

its capabilities through advanced AI approaches. The current study aligns with 

these objectives and embarks on two primary missions. The first objective entails 

adapting and implementing machine and deep learning-based image quality 

transfer techniques, exemplified by methods like SynthSR (Iglesias , et al., 2021) , 

onto practical hyperfine MR T1w images. As part of first objective, we adapt and 

implement deep convolutional neural network models such as SynthSR 

(https://github.com/BBillot/SynthSR) to enhance the image quality of low-field T1 w 

MR tuples. SynthSR stands out as a pioneering learning technique capable of 

producing isotropic volumes of reference MR contrast. It achieves this feat using a 

series of scans from a routine clinical MRI exam, even if the original scans are 

anisotropic 2D acquisitions. The distinctiveness of SynthSR lies in its ability to 
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operate without access to high-resolution training data for the input modalities (see 

Figure 4.3). The fundamental methodology of SynthSR involves leveraging random 

synthetic data that closely mimic the resolution and contrast characteristics of the 

target scans targeted for super-resolution. This synthetic data is systematically 

generated in real-time on a GPU, employing an approach inspired by the 

generative model of Bayesian segmentation. This simulation framework not only 

encompasses contrast and resolution but also encompasses variations in 

orientation, subject motion between scans, as well as factors such as bias field and 

registration errors (Iglesias , et al., 2021). These synthesized artifacts and 

extracerebral tissues are integrated into the simulations. As a consequence, 

SynthSR technique circumvents the need for extensive preprocessing steps such 

as skull stripping, denoising, or bias field correction. The only prerequisite is the 

rigid coregistration of input scans. SynthSR ability to handle diverse artifacts and 

simulate realistic imaging conditions adds to its versatility, rendering it an efficient 

and powerful tool for enhancing the quality and resolution of MRI scans (see Figure 

4.5). Subsequently, our investigation delved into the realm of data-driven denoising 

techniques, specifically focusing on the integration of the non-local means 

algorithm to enhance the image quality of empirical hyperfine MR T1w images 

(Figure 4.4) (Coupe P. , et al., 2007) (Baudes , Coll, & More , 2005). In this phase, 

our approach involved the adaptation and implementation of a 3D non-local means 

denoising algorithm onto practical hyperfine T1w images. This strategic 

incorporation aimed to address inherent noise and artifacts in the acquired images, 

optimizing their overall visual clarity and interpretability (Figure 4.8 and Figure 

4.10). To systematically gauge the efficacy of these enhancements, we went on to 

develop a set of comprehensive image quality measures (Image compression 
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quality measures and objective assessment measures) (Osadebey , Pederson , 

Arnold , & Wendel-Mitoraj , 2018) (Figure 4.9). These metrics were meticulously 

designed to quantify the extent of image enhancement achieved through our 

adapted denoising methodologies. By employing these quantitative measures, we 

were able to objectively evaluate and compare the improvements achieved across 

various image datasets, providing a standardized means to gauge the 

effectiveness of our denoising strategies (Figure 4.9). 

In essence, our study undertook a two-fold approach, first utilizing machine and 

deep learning techniques to enhance the resolution of hyperfine MR T1w images 

through image quality transfer methods like SynthSR. Subsequently, we harnessed 

the power of data-driven denoising algorithms, specifically the non-local means 

algorithm, to further elevate the image quality by reducing noise and refining visual 

clarity. Through these twin methodologies and the development of tailored image 

quality metrics, our study sought to comprehensively optimize the overall quality 

and interpretability of empirical hyperfine MR T1w images. 
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Chapter 5 
Conclusion  
Artificial Intelligence (AI), exemplified by advancements like ChatGPT and DALL-

E, represents a transformative force permeating various aspects of life. One 

prominent domain for AI's application is healthcare, especially in diagnostics. This 

thesis delves into the applications of AI in the human brain, encompassing both its 

structural and functional connectome. The effectiveness of AI's predictions heavily 

relies on robust input features, particularly when dealing with intricate systems like 

the brain. In this context, it becomes crucial for these features to be firmly grounded 

in well-established biological evidence. When rooted in biological evidence, these 

features enable the model's predictions to closely align with observed outcomes 

within the biological systems it aims to replicate. Notably, in functional 

connectomics, brain connectivity patterns offer a promising avenue for identifying 

input features guided by biological evidence. Developing a data-driven 

methodology for studying brain connectivity patterns, free from data biases, holds 

paramount importance. Dynamic functional connectivity (dFC), despite its inherent 

limitations (Preti, Bolton, & Van De Ville , 2017) captures meaningful information in 

temporal fluctuations on the scale of minutes (Hutchison & et al, 2013). 

Understanding the key contributors to the stability of FC patterns in ongoing brain 

dynamics is crucial for survival and remains an unresolved vital issue (Li, Lu, & 

Yan, 2019). In the realm of structural connectomics, the utilization of machine 

learning and deep learning models to enhance the image quality of low-field MRI 

scans carries significant importance, especially for lower and middle-income 



Conclusion 

Page | 125 
 

 

countries. These advancements have the potential to substantially improve image 

quality, thereby positively impacting medical diagnostics and research within these 

regions. 

In Part I of this thesis, we concentrate on developing data-driven, unsupervised 

methodologies and stochastic measures to estimate the temporal stability of 

functional connectomics. These methods are applied to large-scale resting-state 

lifespan aging and common mental disorder datasets. In Part II of the thesis, the 

focus shifts to utilizing deep learning and machine learning models for enhancing 

T1-weighted structural images. In the three studies detailed in Chapters 2, 3, and 

4, we arrive at the following significant conclusions: 

1. In study 1, we introduce a novel data-driven, unsupervised method aimed 

at characterizing the temporal stability of functional brain architecture. When 

we applied this method to a dataset representing lifespan aging (N>600 

participants), we made several noteworthy observations. Firstly, during a 

naturalistic movie-watching task, the temporal dynamics of the entire brain 

were more similar to those observed during resting states than during 

sensorimotor tasks. Secondly, our study revealed that the sensorimotor task 

exhibited the highest peak temporal stability, followed by naturalistic movie 

watching and resting states. This pattern held true across different age 

groups, including young, middle-aged, and elderly individuals. Most 

importantly, we found that the temporal stability of the functional brain 

architecture during resting states was primarily influenced by the stability of 

the sensorimotor network across the entire lifespan. This discovery 

underscores the potential of using temporal stability measures as valuable 
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biomarkers for a range of neurological disorders, given their ability to 

quantify differences in network stability associated with healthy aging. 

2. In study 2, we apply and improve upon our novel methodology introduced 

in study 1 and propose an unsupervised approach that combines spatial 

and temporal characterization of brain networks to classify common mental 

disorders from fMRI timeseries, utilizing two cohorts (N=408 participants). 

This study highlights the significance of dynamic functional connectivity 

(dFC) and temporal stability in characterizing common mental disorders. 

While the community architecture of functionally connected brain networks, 

assessed using the weighted stochastic block model (WSBM), shows 

discernible patterns between individuals with mental disorders and healthy 

controls, nonetheless WSBM faced challenges in clearly distinguishing 

between different disorders. The measurements of assortativity, coreness, 

and motif participation index provide valuable insights into community 

interactions but did not result in distinct separation between disorders. 

However, temporal stability analysis, through angular distance, global 

temporal distance and entropy calculations, uncovers impaired stability in 

schizophrenia and ADHD, while bipolar disorder shows notable differences. 

These findings underscore the crucial role of dFC and temporal stability in 

understanding and characterizing common mental disorders, offering 

potential insights into their underlying mechanisms and potential diagnostic 

markers. 

3. In study 3, our analysis pursued a dual approach. Firstly, we employed 

machine and deep learning techniques to enhance the resolution of 

hyperfine MR T1-weighted images using image quality transfer methods like 
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SynthSR. Following that, we harnessed data-driven denoising algorithms, 

particularly the non-local means algorithm, to further improve image quality 

by reducing noise and enhancing visual clarity. Through the combination of 

these two methodologies and the creation of customized image quality 

metrics, our study aimed to comprehensively optimize the overall quality and 

interpretability of empirical hyperfine MR T1-weighted images. 

Future directions 

A meaningful extension of the present thesis could involve exploring the potential 

of using temporal stability as a feature in the classification of common mental 

health disorders by developing unsupervised classification algorithms. This would 

delve into the application of temporal stability measures to enhance our 

understanding of these disorders and potentially improve diagnostic capabilities. 

Another promising avenue for extension would be to investigate whether temporal 

stability could serve as a predictive marker. For instance, can temporal stability be 

used as a predictive marker for epilepsy seizures? This research could involve 

leveraging brain connectivity patterns to identify key distinctions between seizure 

and non-seizure activity, potentially leading to advancements in seizure prediction 

and management. Furthermore, a methodological extension could involve 

adapting the method used for estimating temporal stability, which is primarily based 

on fMRI datasets, to other imaging modalities such as EEG, MEG, and 

simultaneous EEG-fMRI. This expansion of the methodology could enable a 

broader and more comprehensive exploration of temporal stability in neural activity 

across various imaging techniques, providing valuable insights into brain 

dynamics. 
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Appendix  
Supplementary figures and tables  

 

Figure A 2.1 Temporal stability matrices of the resting state, naturalistic movie 
watching task and sensorimotor task, where each entry is the principal angle  
between dominant dFC subspaces at  and , for young and old adults. For validation 
of the results where dFC was estimated using BOLD phase coherence, we 
calculated dFC using sliding window approach with (window length) WL = 10 time 
points. 
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Figure A 2.2 Temporal stability matrices of the resting state, naturalistic movie 
watching task, and sensorimotor task, for both young and old adults. dFC was 
estimated using sliding window approach with (window length) WL= 20 time points. 

 

 
Figure A2.3 Temporal stability matrices of the resting state, naturalistic movie 
watching task, and sensorimotor task, for both young and old adults. dFC was 
estimated using sliding window approach with (window length) WL= 30 time points 
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Figure A2.4 The Plot represents the variance explained by all 116 principal 
components of the input dFC matrix for all categories. The first three principal 
components explain almost 99% of the variance of the input matrix.  



Appendix 

Page | 148 
 

 

 
Figure A2.6 The plot represents entropy of temporal stability matrices of resting 
state (rest), movie watching (movie) and sensorimotor task (smt) across young, 
middle and old adults, in both angular distance and Mahalanobis distance metric.  

In angular distance, comparing the median values, peak entropy was reported in 
temporal stability matrices of resting state, followed by movie watching task and 
sensorimotor task. The distributions were non-parametric. Wilcoxon sign rank test 
revealed significant differences between entropy of temporal dynamics matrices of 
resting state and movie watching task, movie watching and sensorimotor task and 
sensorimotor task and resting state in young, middle and old adults as shown 
below: 

Angular distance  rest - movie movie-smt smt-rest 

Young  p=1.10e-10 p=0.034 p=2.6e-17 

Middle  p=6.9e-11 p=5.19e-04 p=5.65e-21 

Old  p=0.0013 p=4.9e-09 p=9.81e-17 
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In Mahalanobis distance, although the median values report peak entropy in movie 
watching task, followed by resting state and sensorimotor task, the violin plot 
indicates high variability of entropy values in resting state and movie watching task 
among middle and elderly. Wilcoxon sign rank test revealed significant differences 
between entropy of temporal dynamics matrices of resting state and movie 
watching task, movie watching and sensorimotor task and sensorimotor task and 
resting state in young, middle and old adults as shown below: 

Mahalanobis distance  rest - movie movie - smt rest - smt 

Young  ns p=1.9e-05 p=0.0014 

Middle  p=0.0094 p=1.65e-10 p=2.9e-04 

Old  p=7.6e-04 p=1.7e-10 p=0.0073 
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Figure A2.6 Scatter plot of entropy of temporal dynamics matrices of resting state 
brain network subspaces (default mode network, salience network) across lifespan 
ageing (N=645 participants) estimated with angular distance metric. A quadratic 
regression model is fitted onto the entropy values. ‘p’ is effectively a 2-sided t-test 
against the corresponding coefficient being zero. 
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Figure A2.7 Life span ageing related changes in temporal stability of dynamic 
functional connectivity subspace of whole-brain resting state, central executive 
network, default mode network, sensorimotor network, salience network and Visual 
network estimated with Mahalanobis distance metric. A quadratic regression model 
is fitted onto the entropy values. ‘p’ is effectively a 2-sided t-test against the 
corresponding coefficient being zero.  
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Figure A3.1(A-D) Violin plots showing community interaction motifs (assortativity, 
coreness and peripheryness) and diversity index averaged across all communities 
per subject in participants with bipolar disorder (green) and healthy controls 
(orange) (E-F) Violin plots showing community interaction motifs (assortativity, 
coreness and peripheryness) and diversity index averaged across all communities 
per subject in participants with ADHD (green) and healthy controls (orange) 

 

 

Figure A3.2 (A) Static functional connectivity matrices where each entry is the 
Pearson correlation between brain regions n and p ordered by communities (B) 
Each pair of communities, r and s are classified into one of three community motifs 
– assortative, coreness and peripheryness. Diversity index averaged across all 
brain regions per subject. The violin plots indicate, in schizophrenics communities 
are less assortative (C) Morphospace constructed by using all pairs of community 
interactions and are colour coded – blue (assortative community interactions) and 
green (core or peripheryness community interaction). 
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Figure A3.3 Quantifying temporal stability using entropy for the resting state 
networks defined in Schaeffer atlas in Dataset 1 (A) and Dataset 2 (B). Statistically 
significant differences (uncorrected) are indicated using * (P≤ 0.05), ** (P≤ 0.01), 
***(P≤ 0.001), ****(P≤ 0.0001), ns (not significant). 
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