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Abstract

The human brain is composed of modular neural ensembles, each one efficient at an elementary function. Neural
coordination among these ensembles occurs flexibly to perform complex tasks and reorganizes dynamically over
time. Recent studies posit that underlying this ability to switch between coordination states, is the tendency of the
system to move between periods of stability and instability, quantitatively captured by a mathematical measure,
metastability. Previous literature has shown that metastable dynamics are important for optimal functioning, and that
metastability is disordered in several pathologies. Despite its crucial place in coordination dynamics, metastability
and how it changes in response to brain stimulation is an unexplored area. In this study, changes in metastability in
response to Transcranial Magnetic Stimulation (TMS) were investigated. TMS-EEG data acquired from OpenNeuro
were analyzed with two measures of metastability, one based on the variability in coherence, and the other based on
the entropy of spatiotemporal dynamics. We observed a significant reduction in metastability, concurrent with an
increase in coherence. Additionally, higher frequencies showed faster recovery in metastability than lower
frequencies. These results are in line with theoretical expectations and validate the measures applied. Interestingly
an increase in metastability prior to the pulse is also observed in the alpha and theta bands, given that a stimulus
preceding negativity was also observed prior to the pulse, these results suggest a relationship between anticipation
and increased metastability. Overall, this study shows that TMS reliably perturbs metastability, suggesting the use of
TMS to investigate the functional role of metastability. Conversely the dynamic measures of metastability applied

can be used to index the effects of various TMS protocols.
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spTMS Single Pulse Transcranial Magnetic Stimulation
RMT Resting Motor Threshold

rPMC Right Primary Motor Cortex

KOP Kuramoto Order Parameter

LzC Lempel-Ziv Complexity

GFP Global Field Power

ERP Event Related Potential

SPN Stimulus Preceding Negativity




Chapter 1

Introduction

1.1 The Brain as a System of Oscillators

The brain is the electrochemical substrate of our very being. It is an intricate and beautiful
system wherein a myriad of deterministic elements collectively ascend to consciousness. Since
the earliest attempts to measure the electrical dynamics underlying its operation, one thing has
been evident; Neural dynamics are oscillatory (Berger, 1929).

Figure 1.1: An early EEG recording by Hans Berger.

Neural potentials generally oscillate between 1 and 100 hertz and the frequencies that tend
to change together have been grouped into ranges as follows,

1. Delta (1 to 4 Hz), occurs during deep sleep.

2. Theta (4 to 7 Hz), involved in memory consolidation.

3. Alpha (7 to 12 Hz), involved in the gating of sensory information.

4. Beta (13 to 30 Hz), involved in motor coordination.

5. Gamma (30 to 70 Hz), involved in coordinating activity across sensory regions

These oscillations are thought to emerge due to interactions at various scales. At the micro-
scopic scale, the periodic nature of the action potential, and the sub threshold oscillations
observed in certain neurons contribute to this effect. At the mesoscopic scale it is the synchro-
nisation of neural ensembles and interactions between excitatory and inhibitory populations.
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Figure 1.2: The origin of neural oscillations (Le Van Quyen, 2011)
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Finally, at the macroscopic scale feedback interactions between cortical areas produce oscilla-
tory patterns of activity (Cohen, 2014).

Given their ubiquity in neural dynamics, oscillations present an interesting lens by which to
analyse the dynamics of the brain. One perspective treats the brain as a system of interacting
oscillators, that encode information into changes in frequency, amplitude and phase. The
factor controlling the flow of information thus encoded, is the coherence between oscillating
populations.

The dynamics of coherence across the brain can thus represent how information is flowing
across the cortex. In recent years an investigation of said dynamics has revealed an interesting
property of the brain, metastability.

1.2 Metastability

In simple oscillatory systems, the dynamics converge to complete synchrony if the coupling
is strong enough, or remain asynchronous if the coupling is too weak (Cabral et al., 2011). In
these situations a single stable state exists and the system is confined by it. However, dynamics
in the brain manifest differently; the system moves between a range of partially coherent states,
only briefly dwelling at each one before transitioning to the next. These dynamics in the
absence of an attractor or noise are defined as metastability (Tognoli & Kelso, 2014). The
coherence between regions changing in this way has several advantages,

1. Regions with heterogeneous intrinsic dynamics can be coupled and exchange informa-
tion.
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Figure 1.3: How coherence affects information transfer (Deco & Kringelbach, 2016)

2. The system is able to switch between coupling states without becoming confined to
them.

3. No energy input is required to transition the system between coupling states.

As a consequence of this, metastability enables the brain to fully explore its dynamical po-
tential. Reflecting the fundamental role of metastability, modeling studies have found it to
be critical to the emergence of coupling through coherence (Deco & Kringelbach, 2016) and
maximized in the resting state (Deco et al., 2017; Hellyer et al., 2014). A plethora of stud-
ies further validate this claim by showing changes in metastability to accompany altered or
disordered states of consciousness,

* Large reductions in metastability (during epilepsy or sleep) cause loss of consciousness
(Cavanna et al., 2018; Jobst et al., 2017).

* Metastability is reduced following traumatic brain injury (Hellyer et al., 2015).
* Progressive reduction observed in Alzheimer’s disease (Cérdova-Palomera et al., 2017).
* Metastability is found to be higher among schizophrenics (Lee et al., 2018).

* Metastability increases following the use of psychedelic drugs (Carhart-Harris et al.,
2014; Lord et al., 2019).

Some of these studies also indicate changes in cognitive flexibility caused by reduction in
metastability (Cérdova-Palomera et al., 2017; Hellyer et al., 2015). In summary, when viewed
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as a system of oscillators, the brain exhibits a property known as metastability which is crucial
for its operation. Changes to it manifest in altered consciousness and functioning.

1.3 Transcranial Magnetic Stimulation

In Transcranial Magnetic Stimulation (TMS), an electromagnet is used to briefly create a mag-
netic field over a part of the cortex, thereby inducing an electrical current. This method is used
to non invasively perturb the cortex and can be used to excite or inhibit a region depending on
the stimulation protocol and location (Klomjai et al., 2015). TMS protocols can be classified
based on the frequency of stimulation as follows,

1. Single pulse: A single monophasic, or biphasic magnetic pulse is delivered
2. Paired pulse: Two pulses are delivered to separate areas within a short delay.
3. Repetitive: Pulses are delivered continuously at a certain frequency.

4. Burst: Pulses are delivered in high frequency bursts intermittently.

Single pulse TMS has been used in research contexts to interfere with cognition (Robertson
et al., 2003) and in clinical settings to test the integrity of motor pathways (Perez & Cohen,
2009). Repetitive protocols and burst stimulation can increase the excitability of the stimulated
region or increase the connectivity between two regions. This is being used as a treatment
for drug resistant depression (Eshel et al., 2020). Despite the wide usage of TMS in both
research and clinical settings, there exists tremendous variability in its effects (Corp et al.,
2021). An index of neural dynamics that characterises the effects of a given protocol would
be extremely useful to help optimise protocols and replicate results. TMS is known to cause
phase locking in the stimulated region. This would effectively force the brain into a specific
coupling state, altering metastability transiently. Paired and repetitive TMS are also known to
produce long term effects on coherence and excitability which could produce longer lasting
changes to metastability. Thus metastability could be used as an index to describe the effects
of a given TMS protocol. It has utility over simpler spectral measures, since it is preserved
across timescales, allowing it to describe both transient and long term effects of TMS. Another
advantage is that it relates more directly to higher order functions, and its derangement during
disorders of consciousness is documented. Hence optimising clinical protocols with respect to
it could enhance their effectiveness. Finally studying how metastability changes in response
to TMS would help explain the mechanism by which certain protocols have their effects and
in turn better describe how metastability relates to cognitive functioning.
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Figure 1.4: Working principle of TMS (Viesca et al., 2012)

1.4 Goals

The goals of this dissertation are as follows,

1. To investigate how metastability changes immediately after single pulse monophasic
TMS.

2. To establish whether metastability can be used to index the immediate effects of TMS
protocols.

3. To use the nature of this effect to improve our understanding of how metastability relates
to cognition.
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Methods

2.1 Data Collection

The data used in this study was obtained from OpenNeuro. One dataset had 20 participants
(Hussain, 2019) while the other had 13 (Pavon et al., 2022). 300 seconds of resting state, eyes
open EEG were recorded for estimation of Resting Motor Threshold (RMT) using either a 30
channel electrode array and a 5kHz sampling rate (Hussain, 2019) or a 63 channel electrode
array with a 20kHz sampling rate (Pavon et al., 2022). Single pulse, monophasic TMS was
delivered to the right Primary Motor Cortex (rPMC) at 100%, 110% and 120% of RMT every
5 seconds. 600 trials at 120% of RMT were conducted in one dataset (Hussain, 2019) with
75 trials at 110, 100% of RMT in the other (Pavon et al., 2022). EEG recordings were taken
simultaneously. The coil noise was not masked, but participants were provided with earplugs
to reduce the disturbance.

2.2 Preprocessing

The resting state and TMS stimulated data were preprocessed prior to analysis. The resting
state data were processed using custom MATLAB code utilising a combination of Artifact
Subspace Reconstruction (Plechawska-Wojcik et al., 2019) and MARA (Winkler et al., 2011)
based independent component rejection. The TMS stimulated data were preprocessed using
the ARTIST pipeline (Wu et al., 2018). All data was downsampled to 1kHz and bandpass
filtered between 1 and 100Hz prior to analysis.
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Figure 2.1: ARTIST pipeline (Wu et al., 2018)

2.3 Measures of Metastability

The Standard Deviation of the Kuramoto Order Parameter

Two measures of metastability were then applied to the preprocessed data. The first measure
was based on the standard deviation of the Kuramoto Order Parameter (KOP) based on the
work of Wildie and Shanahan (2012). The Kuramoto order parameter is a measure of syn-
chrony in a network of oscillators. It is calculated by using the following formula,

. 1 X ‘0
w_lej
re = e
N &

Where ‘N’ is the number of oscillators and ‘6;’ is the phase of the jth oscillator and ‘7’
is the Kuramoto order parameter. The KOP can be thought of as plotting the phase of each
oscillator as a point on a unit circle, and then taking the magnitude of their resultant vector.
Its value is 1 for a completely synchronised system and O for a desynchronised system. Its
standard deviation indicates the ability of the system to deviate from stable states and thus can
be used as a measure of metastability. For this measure, the TMS EEG data were bandpass
filtered within narrow frequency bands (for example, 8 to 12 Hz), after which the instantaneous
phase was extracted via Hilbert transformation. The KOP was then calculated for each time
point. Its standard deviation in a sliding window of 50 ms was used as a dynamic measure of
metastability. The metastability timeseries were then averaged across epochs and participants
to yield the final results.

The choice of which group of channels to include in computing this measure is an im-
portant one. Since changes to global coherence (all channels) are relatively less intense, and
stimulation with TMS has prominent local effects, channel groupings derived from an algo-
rithm were analysed in addition to global metastability. This algorithm aimed to capture local
effects on synchrony and grouped channels together based on the similarity of their TMS
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evoked potential. First the evoked response to TMS would be calculated in each stimulation
intensity by averaging across epochs and subjects. Then the timepoint with the highest Global
Field Power (GFP), meaning the highest spatial standard deviation, was selected. At this time
point, the activity of each channel was subtracted from the mean of all channels. The channels
were then sorted in ascending order of their mean differences, and the top and bottom tertiles
were labeled as group 1 and group 2 respectively. This algorithm is analogous to the process
of visually inspecting the evoked response, finding the point at which the channels activity is
the most varied, and sorting the most extreme channels into their own groups.

Microstate Sequence Complexity

The second measure was devised for this study and is based on microstate sequence complex-
ity. Microstates are quasi-stable spatial activity patterns that are derived from EEG data using
clustering algorithms. The original recording can then be backfitted to the most similar mi-
crostate at each point in time and be analysed as a sequence of microstates (Lehmann, 1971).
The quasi-stable nature of these states is reminiscent of the dwell and escape tendencies seen
in metastable dynamics while the microstates themselves are related to the coordination states
whose metastability is the subject of this study. The central idea behind this measure is that
metastable coordination dynamics will produce a non-repetitive microstate sequence. This can
be quantified for the microstate sequence using measures of ‘complexity’.

0 500 1000 1500 2000 ms

RGOSR

Figure 2.2: Overview of microstate analysis (Michel & Koenig, 2018)

‘Complexity’ refers to the unpredictability of a signal and is quantified here by Lempel-Ziv
Complexity (LZC). The LZC of a string is the minimum number of unique sub-strings that can
be repeated and combined to reproduce the original. It increases with the unpredictability and
length of a string (Lempel & Ziv, 1986). In order to compute this measure, microstates were
derived from GFP peaks in resting state data that was bandpassed to alpha (8-12 Hz). The
clustering was done using Topographical Atomise and Agglomerate Hierarchical Clustering.
In this method initially, each timepoint is its own microstate. Through iteratively eliminat-
ing (atomising) and redistributing (agglomerating) the worst microstate, based on the sum of



CHAPTER 2. METHODS 9

correlations between the microstate and its members (Correlation Sum), the number of mi-
crostates is reduced to two (a preset minimum) thereafter, an optimal number of microstates
can be selected (Khanna et al., 2014; Poulsen et al., 2018). The number of microstates for each
participant were selected using the Krzanowski-Lai criterion applied to the Correlation Sum.
This is a method of finding the point past which the Correlation Sum plateaus with respect
to the number of microstates (Krzanowski & Lai, 1988). This microstate decomposition was
performed for each participant individually. The microstates for each participant were then
back fitted to their resting state data, and fitted to their TMS EEG data. After this, the Lempel-
Ziv complexity was calculated in a 100 ms sliding window and averaged across epochs and
subjects before being compared between resting state and TMS EEG recordings. This short
window was considered suitable since good temporal resolution was required for this analysis
and previous literature has shown that microstate sequences show scale free dynamics (Van
De Ville et al., 2010).

To test the changes in metastability for significance, two 250 ms windows of time were
defined, before and after the pulse. Then the epoch averaged measures were averaged in the
windows of time, yielding a pre and post pulse metastability value for each participant. Given
that the sample size was less than 30 and the results of the Shapiro-Wilk test of normality were
inconsistent, normality could not be safely assumed. Thus the difference between the two lists
of metastability measures was tested for significance using Wilcoxon’s Signed Rank test. This
is a non-parametric test suitable for testing dependent samples. The significance threshold was
set to 0.05, and p values below this were used to indicate a significant difference. The test was
carried out in a one-tailed manner, with the direction being dependent on the effect in question.

2.4 Event Related Potentials

Event Related Potentials (ERPs) are EEG changes that are time locked to sensory, motor or
cognitive events (Sur & Sinha, 2009). They are obtained through averaging activity around an
event across a large number of trials. The ERPs observed during a specific task can be used to
indicate which neural events took place during the task based on what those ERPs were pre-
viously associated with. To understand preliminary results showing changes in metastability
prior to the TMS pulse, an analysis of event related potential was also performed. Specifically,
slow negative waves, which are documented signs of anticipation were tested for using estab-
lished procedures (Luck & Kappenman, 2011). This analysis consisted of lowpass filtering
the data at 2 Hz, epoching around the pulse and then averaging across epochs and participants.
200 milliseconds preceding the TMS pulse were then visually inspected for a slow negative
wave.
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Results

3.1 Local Synchronisation Following TMS

The channel grouping algorithm described in the methods section showed a frontal-central
cluster and a temporal-occiptial cluster. The groups appear to be clustered around the point of
stimulation (rPMC) and probably resulted from the shape of the electrical field induced. The
groups created are depicted below (figure 3.1).

All Channels

Time (s) Electrodes

Figure 3.1: Channel groupings derived from the TMS Evoked Potential

11
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3.2 Metastability Fluctuations around the TMS pulse

As stated previously, the metastability analysis based on the Kuramoto Order Parameter was
performed for each group to see the effects of local synchrony. Among all 3 groups, spTMS
stimulation causes 10 to 40% reduced order parameter standard deviation for a duration depen-
dent on the frequency band. Higher frequencies (alpha, beta, gamma) recover quickly (within
200 ms) while lower frequencies (delta, theta) recover slowly (within 400 ms). In all frequency
bands a 10% increase prior to the pulse is seen, while in the alpha and theta bands subsequent
recovery 10 to 15% past baseline levels was also observed. At a global level these changes
were accompanied by a 10% decrease in coherence, however, for groups 1 and 2, a sharp in-
crease in coherence was observed concomitant with the same changes to metastability. These
effects were replicated across all stimulation intensities (120%, 110% and 100% of Resting
Motor Threshold). The results for group 1 and 120%RMT TMS (figure 3.2) and the table
detailing the significance of each effect (figure 3.3) is given below. The same figures for the
other channel groups and stimulation intensities can be found in Appendix A.
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Figure 3.2: Results for the Kuramoto Order Parameter measure of metastability. In each figure
the orange line indicates metastability and is scaled on the left y axis, the blue line indicates
coherence and is scaled on the right y axis and the TMS pulse is indicated by the vertical
purple line. Both metastability and coherence are plotted as a percentage of a baseline value
calculated as the mean between 525 and 1525 ms. Results are plotted separately for each
frequency band.
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Delta Theta Alpha Beta Gamma All
Decrease in KOP | 200 210 88 146 202 205
after pulse (p<0.001) | (p<0.001) |(p=0.73) |(p=0.06) |(p<0.001) |(p<0.001)
Increase in KOP 6 2 21 26 13 149
before pulse (p<0.001) | (p<0.001) |(p<0.001) | (p<0.001) | (p<0.001) | (p=0.951)
Increase in KOP 162 55 17 48 82 197
after pulse (p=0.985) [ (p=0.031) |[(p<0.001) | (p=0.016) | (p=0.204) [ (p=0.999)

Figure 3.3: Test statistics and p values for one-tailed Wilcoxon’s Signed Rank tests conducted
on the Kuramoto Order Parameter measure (KOP).

Microstate global explained variance was worse for the backfitted TMS data than for the
resting state data (on which the clustering algorithm was run) but the performance was suffi-
cient for continued analysis (0.65 to 0.60). Microstate analysis shows increased variation in
microstate duration, and polarization of transition probabilities in the TMS stimulated data.
The Lempel-Ziv complexity increased prior to the TMS pulse (test statistic = 22, p= 0.002)
and was reduced following TMS stimulation (test statistic = 138, p value = 0.01) and recovered
to baseline levels within 200 ms.

Lempel-Ziv Complexity (8-12Hz)
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Figure 3.4: Results for the Lempel-Ziv Complexity Measure. The orange line is LZC in the
TMS stimulated condition while the blue line is LZC in the resting state. Complexity was
calculated in 100 ms bins and averaged across subjects and epochs. The resting state data was
subsampled and averaged in the same way. Results are plotted as a percentage of the mean
LZC across the first 3 bins.

The transition probabilities for the microstates were initially relatively consistent, with
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Transition Probabilities
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Figure 3.5: Microstate Transition Probabilities. The probability of transitioning from the row
microstate to the column microstate is given by the color of the cell as defined by the color
map on the right. The bottom heatmap depicts transition probabilities for 1000 ms following
TMS, while the top heatmap depicts the same for an equivalent length of resting state data
from a given participant.
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each microstate have a roughly even chance of transitioning to any other microstate. In the
period after the TMS pulse for which metastability is reduced, transition probabilities increase
along some columns and decrease along others. Since the columns indicate the probability
of another microstate transitioning into a given microstate, this change reflects the repeated
consolidation of dynamics to the same pattern(s) of activity.

3.3 Stimulus Preceding Negativity before the TMS pulse

The ERP analysis revealed a Stimulus Preceding Negativity (SPN) with a central distribution
prior to the TMS pulse in all 3 stimulation intensities. The reduction in potential observed was
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between 0.3 and 0.6 microvolts. The small magnitude of this effect could be explained by the
aggressive Preprocessing made necessary by TMS artifacts since this significantly attenuates
the signal.

Stimulus Preceding Negativity

Nave=20 EEG (6 channels) 120%RMT -0.999 - -0.001 s

Nave=10 EEG (13 channels) 110%RMT

Time (s)

Naye=13 EEG (13 channels) 100%RMT

-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0
Time (s)

Figure 3.6: Stimulus Preceding Negativity. The voltage timeseries is given for each electrode
involved in the SPN (shown in the top left of each voltage timeseries). The spatial distributions
are averaged over 1 second prior to the TMS pulse. Results are provided for each stimulation
intensity (indicated on the top right of each voltage timeseries.)
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Discussion

4.1 Metastability as a Dynamic Index of Neural Activity

Metastability emerges when a delicate balance between integrative and segregative tendencies
exists (Tognoli & Kelso, 2014). It can be understood as a winnerless competition between a
set of coordination states (Deco et al., 2017). Since the TMS pulse artificially synchronises
certain groups of oscillators, it would follow that the natural balance between them would
be disrupted and the dynamics would appear less metastable. Although this effect would be
highly localised and brief due to the stimulation alone, the impulse delivered to the stimulated
population could propogate through the network and reset their phase dynamics as it does so.
This would effectively cluster neural populations based on their delay with the stimulated re-
gion, and increase synchronisation within those clusters. The relative simplicity and stability
of the resulting coordination state would manifest in reduced metastability. The time taken to
return to resting metastable dynamics would then depend on frequency. Since the metastable
dynamics in question are those of relative phase, a faster changing phase (frequency) would
enable the natural dynamics to reemerge faster. Indeed, this frequency dependency is reflected
in the results. The reduced Lempel-Ziv complexity following stimulation corroborates the re-
sults of the Kuramoto order parameter based analysis. Furthermore, the polarised transition
probabilities between microstates suggests that the brain repeatedly consolidates to the same
coupling state under reduced metastability. This aligns with how natural dynamics would pe-
riodically start to emerge but then be interrupted as the phase reset propogates thorugh the
network with a delay. This set of results supports the idea that metastability can be mean-
ingfully quantified over a 50ms sliding window, and its fluctuations index the coordination
dynamics of the network.
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Figure 4.1: Mechanistic explanation of how TMS perturbs metastability. Figure A depicts how
the phase locking caused by TMS can propogate through the network, increasing coherence
within clusters and decreasing the overall metastability. Figure B shows metastability in terms
of an energy landscape. The system has high metastability when it moves in and out of points
of stability (wells in the energy landscape) the period of depressed metastability is analogous
to a valley, where movement is more constrained.
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4.2 Metastability and Anticipation

An interesting and surprising result of this analysis was the increase in metastability observed
prior to the pulse in the alpha and theta bands. Having thoroughly ruled out any artifac-
tual sources of this effect, the most likely explanation was anticipation. Since hundreds of
pulses were delivered during recording sessions, the distinctive ‘click’ of the TMS coil was not
masked and the interstimulus interval was consistent, it was possible that the subjects came to
anticipate the pulse and the increase in metastability reflected that mental state. to address this
question, the data were examined for the presence of a Stimulus Preceding Negativity (SPN).
The SPN is an ERP associated with the anticipation of an affective or physiologically arousing
stimulus such as opposite sex nudes or painful electric shocks (Luck & Kappenman, 2011).
In one study, an electric shock was delivered 100 - 300ms after an audio cue, and the SPN
was observed in the time after the audio cue (Tanovic & Joormann, 2019). These conditions
are highly reminiscent of the TMS coil click being followed by the scalp sensations of TMS.
The presence of the SPN in the data and the fact that TMS can produce sensations similar to
electrical stimulation, supports the idea that participants were anticipating the stimulus in the
same time window as the increase in metastability. The neurophysiological mechanism for
this effect and whether the increase in metastability is facilitatory or collateral to anticipation
is an area of future investigation.

4.3 Implications and Future Directions

The validation of metastability as a measure of coordination dynamics in short timescales in
the primary contribution of this work. Quantified in this way, metastability could be used to
index dynamical shifts following any type of intervention to better understand its effects. This
is especially useful in the context of non invasive brain stimulation, since the individual vari-
ability for a given protocol could be understood and reduced by indexing neural dynamics after
stimulation. Furthermore, given how metastability is deranged in a wide range of neurological
disorders, stimulation protocols aimed at treating them could show better effects if optimised
based on their effect on metastability. It bears advantages over simpler measures such as co-
herence because of its relevance to pathology and its occurrence at multiple timescales. This
property is exceptionally useful since it allows this measure to be applied to both EEG and
MRI data, and capture changes occurring over disparate timescales.

Another intriguing implication of this work is that metastability may change in tandem
with emotional or cognitive states, as indicated by the increase during the SPN. Studying how
metastability changes during cognitive tasks and in response to affective stimuli would shed
light on theoretical questions of how mood can affect cognition and how dynamical properties
like metastability relate to cognitive function.

Finally, the global desynchronisation and local synchronisation created by TMS presents
a unique lens with which to analyse it’s effects. Rather than seeing TMS as tool to excite one
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region, it might instead be seen as a way of linking a set of regions. Building a computational
model of this phenomenon and using it to contextualise the effects of various TMS protocols

is a direction of future study.
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Additional Figures
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Figure A.1: KOP results for channel group 1 and 100% RMT stimulation
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Figure A.3: KOP results for channel group 2 and 100% RMT stimulation
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Figure A.4: KOP results for channel group 2 and 110% RMT stimulation
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Figure A.5: KOP results for channel group 2 and 120% RMT stimulation
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Figure A.6: KOP results for all channels and 100% RMT stimulation
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Figure A.7: KOP results for all channels and 110% RMT stimulation
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Figure A.8: KOP results for all channels and 120% RMT stimulation
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Appendix B

Code Used for Preprocessing, Analysis
and Figures

B.1 Python Code used for Analysis and Figures

import numpy as np

import pandas

import mne

import re

import scipy.stats

import scipy.io

import matplotlib.pyplot as plt
import matplotlib.lines as mlines
from pathlib import Path

import seaborn as sns

import antropy

mne. viz.use_browser_backend(’qt’)

#functions
def coherence_timeseries(phase_timeseries): #voltage_epochxchannelxtime to coherence_epochxtime

theta_nxt = np.angle(phase_timeseries)

average_X_t np.mean(np.cos(theta_nxt), axis = 1)
average_y_t = np.mean(np.sin(theta_nxt), axis = 1)
coherence_t = (average_x_t =% 2 + average_y_t =% 2) *% 0.5

return coherence_t
def phase_coherence(angles_vec): #alternative coherence function
suma = sum([(np.e #x (1j % i)) for i in angles_vec])

return abs(suma / len(angles_vec))

def metastability_timeseries (coherence_timeseries , window_size, type): #coherence_epochxtime to metastability_epochxtime

if type == ’sliding_future ’:
indexes = np.arange(coherence_timeseries.shape[l] - window_size)
meta_t = np.zeros ((coherence_timeseries.shape[0], indexes.shape[0]))
for i in indexes:
meta_t[:,i] = np.std(coherence_timeseries[:, i:i+window_size], axis=1)
elif type *sliding_past’:

indexes np.arange (window_size , coherence_timeseries.shape[1])
meta_t = np.zeros ((coherence_timeseries.shape[0], indexes.shape[0] + window_size))
for i in indexes:

meta_t[:,i] = np.std(coherence_timeseries[:, i—-window_size:i], axis=1)
elif type == ’sliding_sym’:
interval = int(window_size / 2)
indexes = np.arange(interval , coherence_timeseries.shape[l] - interval)

meta_t = np.zeros ((coherence_timeseries.shape[0], indexes.shape[0] + interval))
for i in indexes:

i = int(i)

start = int(i - interval)

end = int(i + interval)
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meta_t[:,i] = np.std(coherence_timeseries[:, start:end], axis=1)
elif type == ’sliding_pulse_start_sym’:
interval = int(window_size / 2)
pulse = (coherence_timeseries.shape[l] — 1) / 2
first_indexes = np.arange(interval , pulse - interval)
second_indexes = np.arange(pulse + interval, coherence_timeseries.shape[l] — interval)
indexes = np.concatenate ((first_indexes , second_indexes))
meta_t = np.zeros ((coherence_timeseries.shape[0], indexes))
for i in indexes:
i = int(i)
start = int(i — interval)
end = int(i + interval)
meta_t[:,i] = np.std(coherence_timeseries[:, start:end], axis=1)
elif type == ’sliding_pulse_start’:
pulse = (coherence_timeseries.shape[l] — 1) / 2
indexes = np.arange(window_size, coherence_timeseries.shape[l] - window_size)

meta_t = np.zeros ((coherence_timeseries.shape[0], indexes.shape[0]))
for i, index in enumerate(indexes):
if index < pulse:

meta_t[:,i] = np.std(coherence_timeseries[:, int(index-window_size):int(index)], axis=1)
else:
meta_t[:,i] = np.std(coherence_timeseries[:, int(index):int(index+window_size)], axis=1)
elif type == ’binned’:
pulse (coherence_timeseries.shape[l] — 1) / 2
bins = int(coherence_timeseries.shape[1] / window_size)
meta_t = np.zeros ((coherence_timeseries.shape[0], bins))
for i in range(bins):
start = int(i * window_size)
end = int(start + window_size)
meta_t[:,i] = np.std(coherence_timeseries[:, start:end], axis=1)

return meta_t

def LZ(x):
#run length encoding
where = np.flatnonzero
X = np.asarray (x)
n = len(x)

starts = np.r_[0, where(~np.isclose(x[1l:], x[:—-1], equal_nan=True)) + 1]
lengths = np.diff(np.r_[starts , n])

values = x[starts]

runs = list(zip(lengths, values))

#count unique runs

no_dupes = set(runs)

uniques = len(no_dupes)

return uniques

def LZtimeseries(labels_t, window_size, type): #calculates running LZ complexity using provided increment

timepoints = int(len(labels_t)/window_size)
LZ_t = np.zeros(timepoints)
if type == ’incremented’:

for i in range(timepoints):

LZ_t[i] = antropy.lziv_complexity (labels_t[:window_size + window_sizexi], normalize=False)

if type == ’sliding’:

interval = int(window_size / 2)

indexes = np.arange(interval , labels_t.shape[0] — interval)

LZ_t = np.zeros(indexes.shape[0] + interval)
for i in indexes:
i = int(i)
start = int(i — interval)
end = int(i + interval)
LZ_t[i] = antropy.lziv_complexity(labels_t[start:end], normalize=False)
if type == ’binned’:
bins = int(labels_t.shape[0] / window_size)
LZ_t = np.zeros(bins)
for i in range(bins):
LZ_t[i] = LZ(labels_t[i*window_size: isxwindow_size + window_size])
return LZ_t

#theme

pal = {"Tiffany_Blue":"#00C6B8" ,"Persimmon":"#E65C18","Dark_Slate_Gray":"#1a5e63"," Alice_Blue":"#f6fafd", "Alice_Blue_dark":"#eef6fb",

sns.set_theme (context="notebook’, style="white’)

#path and montage
directory120 = ’/home/cbdl/Downloads/Datasets /TMS_EEG/ derivatives/2sepoch_nobl_tagged’
pathlist120 = list(Path(directoryl20).glob( . fif "))

directory110 = ’/home/cbdl/Downloads/Datasets /TMS_EEG_2/derivatives/2sepoch_nobl_tagged/14ms’
pathlist110 = list (Path(directoryl10).glob(f’«110rmt_eeg. fif "))

"English_Violet":
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directoryl00 = ’/home/cbdl/Downloads/Datasets /TMS_EEG_2/derivatives/2sepoch_nobl_tagged/14ms’
pathlist100 = list(Path(directoryl00). glob(f’*100rmt_eeg. fif’))

montage = mne.channels.make_standard_montage (’standard_1005")
samples = { 120%RMT’: pathlist120, *110%RMT’: pathlist110, "100%RMT’: pathlist100}

#channel groups

all_sample_groups = {}
for sample, pathlist in samples.items ():
evoked = []

for path in pathlist:
raw = mne.io.read_raw_fif(path, preload=True)
new_names = dict ((ch_name, ch_name.rstrip(’.”).upper().replace(’Z’, ’z’).replace(’FP’, "Fp’)) for ch_name in raw.ch_names)
raw.rename_channels (new_names)
raw.set_montage (montage)
raw.interpolate_bads ()
events, event_ids = mne.events_from_annotations (raw)
epochs = mne.Epochs(raw, events, [3], baseline=(None,-1), tmin=-2, tmax=2) #'S 3’
evoked.append(epochs.average ())
evoked_gr = mne. grand_average (evoked)
evoked_cxt = evoked_gr. get_data()
evoked_std_t = np.std(evoked_cxt, axis = 0)

peak_std = np.where(evoked_std_t == np.max(evoked_std_t))
evoked_peak_c = evoked_cxt[:,peak_std]
mdiff_c¢ = evoked_peak_c.mean() — evoked_peak_c

channel_fraction = 10/mdiff_c.shape[0]
groupl = np.where(mdiff_c¢ < np.quantile (mdiff_c, channel_fraction))[0]
group2 = np.where(mdiff_c¢ > np.quantile (mdiff_c, 1 — channel_fraction))[0]
all_sample_groups[f’{sample}_groupl’] = groupl
all_sample_groups[f’{sample}_group2’] = group2
all_sample_groups[f’{sample} _all’] = None
if sum(groupl) > sum(group2):
all_sample_groups[f’{sample}_groupl’] = group2
all_sample_groups[f’{sample}_group2’] = groupl
evoked_gr.plot(gfp = True, spatial_colors = True)
evoked_gr.plot(gfp = True, spatial_colors = True, picks=groupl)
evoked_gr.plot(gfp = True, spatial_colors = True, picks=group2)

#metastability and coherence calculation

frequencies = {all’:None, ’delta’:[1,3], ’theta’:[4,7], ’alpha’:[8,12], ’beta’:[15,30], ’gamma’:[35,42]}
window = 50

epoch_avg_coherence = {}
epoch_avg_meta = {}
gr_coherences = {}

gr_meta = {}
meta_std = {}
for sample, pathlist in samples.items ():
sample_groups = {name:group for name, group in all_sample_groups.items() if sample in name}
for index, path in enumerate(pathlist):
raw = mne.io.read_raw_fif (path, preload=True)
new_names = dict ((ch_name, ch_name.rstrip(’.’).upper().replace(’Z’, 'z’).replace(’FP’, "Fp’)) for ch_name in raw.ch_names)
raw.rename_channels (new_names)
raw.set_montage (montage)
raw.interpolate_bads ()
events, event_ids = mne.events_from_annotations (raw)
print(f’retreived_participant_{index}’)
for freq, value in frequencies.items():

if freq != Tall’:

raw_filt = raw.copy (). filter (value[0], value[1])#, [_trans_bandwidth=value[]]+0.25, h_trans_bandwidth=value[]]+0.25
else:

raw_filt = raw.copy()

raw_filt.apply_hilbert ()
epochs = mne.Epochs(raw_filt, events, [3], baseline=(None,-1), tmin=-2, tmax=2, preload=True) #1000]
print(f’{freq}, data_transformed _and_epoched’)

for group in [’groupl’, ’group2’, ’all’]:
voltage_excxt = epochs.get_data(picks=sample_groups[f’{sample}_{group}’])
coherence_ext = coherence_timeseries(voltage_excxt)
coherence_avg_t = coherence_ext.mean(axis=0)
meta_ext = metastability_timeseries (coherence_ext, window, ’sliding_past’)
meta_avg_t = meta_ext.mean(axis=0)
epoch_avg_coherence[f {sample}_{index}_{freq}_{group}’] = coherence_avg_t
epoch_avg_meta[f’{sample}_{index}_{freq}_{group}’] = meta_avg_t

print (f’ grouped_and_epoched_data_of_shape: {voltage_excxt.shape}’)

print (f’epoch—wise_coherence_of_shape: _{coherence_ext.shape}_epoch_averaged_coherence_of_shape: {coherence_avg_t.shape}’)
print (f’epoch—wise_metastability _of shape: {meta_ext.shape} epoch_averaged_metastability of shape: {meta_avg_t.shape}’)

#subject averaging
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meta_arr = np.zeros ([len(pathlist), epoch_avg_meta[f’{sample}_O_all_all’][epoch_avg_meta[f {sample}_O_all_all’] != 0].shape[0]])
for frequency in frequencies:
for group in [’groupl’, ’group2’, ’all’]:
keys = [key for key in epoch_avg_meta.keys() if key.split(’_’)[0] == sample and key.split(’_")[2] == frequency and key.split(’

gr_avg_meta = np.zeros (epoch_avg _meta[f’{sample}_O_alpha_all’].shape[0])
gr_avg_coherence = np.zeros(epoch_avg_coherence[f’{sample}_0O_alpha_all’].shape[0])
print(len(keys), f’{frequency}_{group}’)
for i, key in enumerate(keys):

gr_avg_meta += epoch_avg_meta[key]

gr_avg_coherence += epoch_avg_coherence[key]

meta_arr[i,:] epoch_avg_meta[key ][ epoch_avg_meta[key] != 0]
gr_avg_meta /= len(keys)
gr_avg_coherence /= len(keys)

gr_coherences [f’{sample}_{frequency}_{group}’] = gr_avg_coherence
gr_meta[f’{sample}_{frequency}_{group}’] = gr_avg_meta
meta_std [’ {sample}_{frequency}_{group}’] = np.std(meta_arr, axis=0)

#Produces KOP measure figure
pulse = 2000
baseline = [525,1525]
window=50
for group in [’all’, ’groupl’, ’group2’]:
for stim in [ 120%RMT’, *110%RMT’, *100%RMT" ]:
path = f’/home/cbdl/Downloads/Datasets/figures/RMI1_new_final/{ group}_{stim }.png’

fig, axs = plt.subplots(nrows=3, ncols=2, sharex="col’, figsize=(16,10), tight_layout=True,

axs[2,0].set_xlabel (’Time(ms) )
axs[2,1].set_xlabel (’Time(ms) )
axs[1,0].set_ylabel (f’Metastability (%,_of_baseline)’, size=14, color=pal[’Persimmon’])

keys = [key for key in gr_meta.keys() if key.split(’_’)[0] == stim and key.split(’_’)[2] ==

#axs[i,1].plot(0.05,0.01, x",c=pal["English Violet"])
for i, key in enumerate(keys):

frequency = key.split(’_")[1]

meta_std = np.std(gr_meta[key], axis=0)

baseline_meta = gr_meta[key][ baseline [0]: baseline [1]].mean ()

baselined_meta = (gr_meta[key][gr_meta[key] != 0] / baseline_meta) * 100

baseline_coh = gr_coherences[key][baseline [0]: baseline [1]].mean()

baselined_coh = (gr_coherences[key][ gr_coherences[key] != 0] / baseline_coh) = 100

meta_x = np.arange(int(window/2), gr_coherences[key].shape[0] — int(window/2))

meta_plus = gr_meta[key][gr_meta[key] != 0] + meta_std

meta_plus_baseline = meta_plus[baseline [0]: baseline [1]].mean()

meta_plus_baselined = (meta_plus / meta_plus_baseline) = 100

meta_minus = gr_meta[key ][ gr_meta[key] != 0] - meta_std

meta_minus_baseline = meta_minus[baseline [0]: baseline [1]].mean()

meta_minus_baselined = (meta_minus / meta_minus_baseline) = 100

if i <= 2:
axs[i,0].set_title (frequency.capitalize ())
axs[i,0].locator_params(’y’,nbins=5)
axs[i,0].axvline (pulse, label="pulse’, color=pal[’English_Violet’], alpha=0.8)
axs[i,0].plot(meta_x, baselined_meta, color=pal[’Persimmon’])

axs[i,0].fill_between (meta_x, meta_minus_baselined, meta_plus_baselined, facecolor=

twin = axs[i,0].twinx ()
twin.locator_params(’y’,nbins=5)
twin.plot(baselined_coh, color=pal[’Tiffany _Blue’], alpha=0.8)

gridspec_kw={’width_ratios’: [1, 1]})

group ]

pal[’Persimmon’], alpha=0.2)

else:
axs[i-3,1].set_title (frequency.capitalize ())
axs[i-— 3,1] locator_params (’y’ ,nbins=5)
axs[i-3,1].axvline (pulse, label="pulse’, color=pal[’English_Violet’], alpha=0.8)
axs[i-3,1].plot(meta_x, baselined_meta, color=pal[’Persimmon’])
axs[i-3,1].fill_between (meta_x, meta_minus_baselined, meta_plus_baselined , facecolor=pal[’Persimmon’], alpha=0.2)
twin = axs[i-3,1].twinx ()

twin.locator_params (’y’,nbins=5)
twin . plot(baselined_coh, color=pal[’ Tiffany_Blue’], alpha=0.8)
if i == 4:
twin.set_ylabel (f’Coherence _(%,_of _baseline)’, size=14, color=pal[’Tiffany _Blue’])
fig.savefig(path, bbox_inches="tight’)

##sig testing

#test windows of time for significant difference

samples = [ 120%RMT’, *110%RMT’, *100%RMT’ ]

normality = {}

paired_t = {}

for sample in samples:

for frequency in frequencies:
for group in [’all’, ’groupl’, ’group2’]:

keys = [key for key in epoch_avg_meta if key.split(’_’)[0] == sample and key.split(’_"
pre_250 = np.zeros ((len(keys), 250))
post_250 = np.zeros ((len(keys), 250))
for i, key in enumerate(keys):

)[2] == frequency and key.split(’_")[3]

_")I[3] == grouj

== group]
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pre_250[i,:] = epoch_avg_meta[key][1500:1750]

post_250[i,:] = epoch_avg_meta[key][1750:2000]
pre_means = pre_250.mean(axis=1)
post_means = post_250.mean(axis=1)
print(f’{pre_250.shape}, {post_250.shape}, {pre_means.shape},_ {post_means.shape}’)
normal = scipy.stats.shapiro(pre_means)[1] > 0.05 and scipy.stats.shapiro(post_means)[1] > 0.05
result = scipy.stats.wilcoxon(pre_means, post_means, axis=0, alternative="less’)

paired_t[f’{sample}_{frequency}_{group}’] = { tstat’: result.statistic , ’pvalue’: result.pvalue, 'normality’:

#significant readout based on given alpha
alpha = 0.05
for key in paired_t:
if paired_t[key][ pvalue’] < alpha:
p = paired_t[key][ pvalue’]
print(f’{key} is_significant_(p_value_=_{p})’)
else:
p = paired_t[key][ pvalue’]
print(f’{key}_is_not_significant_(p_value_=_{p})’)

##Microstate analysis

#pathlist
tep_directory = ’/home/cbdl/Downloads/Datasets /TMS_EEG/derivatives/variables/tep_microstates/alpha/’
tep_directory = ’/home/cbdl/Downloads/Datasets /TMS_EEG_2/derivatives/tep_microstates/recleaned_concatenated/100rmt’

tep_pathlist = list (Path(tep_directory ). glob(’*.mat’))
tep_pathlist = list (Path(tep_directory ). glob(’*110_rml_whole_ms.mat’))

rest_directory = ’/home/cbdl/Downloads/Datasets /TMS_EEG/ derivatives/variables/resting_microstates/alpha’
rest_directory = ’/home/cbdl/Downloads/Datasets /TMS_EEG_2/derivatives/resting_microstates/lkhz_resample’
rest_pathlist = list(Path(rest_directory).glob(’=.mat’))

#match names
tep_names = [str(path).split(’/’)[—-1].split(’_")[0] for path in tep_pathlist]
rest_names = [str(path).split(’/’)[-1].split(’_")[0] for path in rest_pathlist]
rest_final = []
tep_final = []
for i, name in enumerate(rest_names):
if name in tep_names and name not in [’768°,°779°]:
rest_final.append(rest_pathlist[i])
tep_final.append(tep_pathlist[i])
tep_final.sort ()
rest_final.sort ()

#load matrices in dict

tep_microstates = {}

resting_microstates = {}

for i, path in enumerate(tep_final):
tep_microstates[i] = scipy.io.loadmat(path, simplify_cells=True)
resting_microstates[i] = scipy.io.loadmat(rest_final[i], simplify_cells=True)

#transition heatmap
path = ’/home/cbdl/Downloads/Datasets /TMS_EEG_2/derivatives/figures/ms_heatmaps/100 _restvswhole’
path = ’/home/cbdl/Downloads/Datasets /TMS_EEG/ derivatives/figures/ms_heatmaps/alpha/taahc_pinv’
path = ’/home/cbdl/Downloads/Datasets/figures/RMI1_new_final/ms_heatmaps’
for i in tep_microstates:

fig , axs = plt.subplots(2)

statl = resting_microstates[i][ stats ][ TP’]

stat2 = tep_microstates[i][ stats ][ avgs ][ 'TP"]

sns . heatmap (statl , ax=axs[0], vmin=0, vmax=stat2 .max(), cmap=’mako’)

sns . heatmap (stat2 , ax=axs[l], vmin=0, vmax=stat2 .max(), cmap='mako’)

fig.suptitle (’Transition_Probabilities )

axs[0].set_ylabel (f’Resting’)

axs[1].set_ylabel (f’TMS”)

fig.savefig(path + f’/{i}_heatmap.png’)

#LZ difference
LZvs = np.zeros(len(tep_microstates))
for i in tep_microstates:
rstart = np.random.randint(0,resting_microstates[i][’fit ][ labels’].shape[0] - 1000)
rest = resting_microstates[i][ fit ][ labels’]J[rstart:rstart + 1000]
tep = tep_microstates[i][ fit ][ labels’][:,3000:4000]
LZrest = LZ(rest)
LZtep = np.zeros(tep.shape[0])
for ii, epoch in enumerate(tep):
LZtep[ii] = LZ(epoch)
LZtep = np.mean(LZtep)
LZvs[i] = LZtep - LZrest

#LZ trace plot
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trace_count = 100
for i in tep_microstates:
fig = plt.figure ()
tep_labels_ext = tep_microstates[i][ fit ][ labels’]
for ii in range(trace_count):
r_epoch = np.random.choice(tep_labels_ext.shape[0])
tep_LZ_t = LZtimeseries(tep_labels_ext[r_epoch,:], 100, type=’incremented’)
tep_slopes = np.diff(tep_LZ_t) / np.diff(np.arange(tep_LZ_t.shape[0]))
plt.plot(tep_LZ_t, alpha=0.2, color=pal["Persimmon"])
r_start = np.random.choice(resting_microstates[i][ fit ][ labels’].shape[0])
rest_labels_t = resting_microstates[i][ fit ][ labels J[r_start:r_start+tep_labels_ext.shape[1]]
rest_LZ_t = LZtimeseries(rest_labels_t, 100, type='incremented’)
rest_slopes = np.diff(rest_LZ_t) / np.diff(np.arange(rest_LZ_t.shape[0]))
plt.plot(rest_LZ_t, alpha=0.2, color=pal[’ Tiffany_Blue’])
fig.savefig (f’/home/cbdl/Downloads/ Datasets/figures/RMI1_LZtimeseries/taahc_pinv/{i}.png’)

bin_size = 100
gr_tep_LZ_t = np.zeros((len(tep_microstates), int(tep_microstates [0][ fit ][ labels’][:,1500:3000].shape[1]/bin_size)))
gr_rest_LZ_t = np.zeros_like(gr_tep_LZ_t)
for i in tep_microstates:
if i not in [0,13,15]:
tep_labels_ext = tep_microstates[i][ fit ][ labels ][:,1500:3000]
rest_labels_t = resting_microstates [1 ][ fit ][ labels’]
tep_LZ_t = np.zeros((tep_labels_ext.shape[0], int(tep_labels_ext.shape[l]/bin_size)))
rest_LZ_t = np.zeros_like (tep_LZ_t)
for ii in range(tep_labels_ext.shape[0]):
tep_LZ_t[ii ,:] = LZtimeseries(tep_labels_ext[ii ,:], bin_size, type=’binned’)
r_start = np.random.choice ((resting_microstates[i][ fit ][ labels’].shape[0]—-tep_labels_ext.shape[1]))
r_rest = rest_labels_t[r_start:r_start+tep_labels_ext.shape[1]]
rest_LZ_t[ii ,:] = LZtimeseries(r_rest, bin_size, type=’binned’)
gr_tep_LZ_t[i] = tep_LZ_t.mean(axis=0)
gr_rest_LZ_t[i] = rest_LZ_t.mean(axis=0)
gr_tep_baselined = (gr_tep_LZ_t.mean(axis=0) / np.mean(gr_tep_LZ_t.mean(axis=0)[0:3])) = 100
gr_rest_baselined = (gr_rest_LZ_t.mean(axis=0) / np.mean(gr_rest_LZ_t.mean(axis=0)[0:3])) = 100
fig , axs = plt.subplots ()
fig.suptitle (’Lempel-Ziv_Complexity_(8-12Hz) ")
pulse = axs.axvline(5, label="Pulse’, alpha=0.6, color=pal[’English_Violet’])
resting = axs.plot(gr_rest_baselined, alpha=0.8, color=pal[’Tiffany_Blue’], label="Resting’)
tep = axs.plot(gr_tep_baselined, alpha=0.8, color=pal["Persimmon"], label="TMS_evoked’)
axs.set_xlabel (’Bins_(100ms)’)
axs.set_ylabel (’Lempel-Ziv_Complexity _(Baselined)’)
blue_line = mlines.Line2D ([],[], color=pal[’ Tiffany_Blue’])
orange_line = mlines.Line2D ([],[], color=pal[’Persimmon’])
axs.legend ([ pulse, blue_line, orange_line], [’Pulse’,’Resting’, ’TMS_Evoked’])
fig.savefig (f’/home/cbdl/Downloads/ Datasets/figures/RMI_new_final/LZ_gr.png’)

#100 random resting vs after comparisons
LZ_pvals = np.zeros(100)
randrange = np.arange(0,62790 - 1000)
r_starts = np.random.choice(randrange, 100, replace=False)
for i in range(100):
LZrest = np.zeros(len(tep_microstates))
LZtep = np.zeros(len(tep_microstates))

r_start = r_starts[i]
for ii in range(len(tep_microstates)):
rest = resting_microstates[ii ][’ fit ][ labels J[r_start:r_start + 1000]

tep = tep_microstates[ii ][ fit ][ labels ][:,3000:4000]
LZrest[ii] = LZ(rest)
LZepochs = np.zeros(tep.shape[0])
for iii in range(tep.shape[0]):
LZepochs[iii] = LZ(tep[iiil])
LZtep[ii] = np.mean(LZepochs)
_, LZ_pvals[i] = scipy.stats.wilcoxon(LZrest, LZtep, alternative="greater’)

sig_fraction = np.mean([pval < 0.05 for pval in LZ_pvals])
mean_pval = np.mean(LZ_pvals)

#comparing before vs after
LZbefore = np.zeros(len(tep_microstates))
LZafter = np.zeros(len(tep_microstates))
for i in range(len(tep_microstates)):
before = tep_microstates[i][ fit ][ labels’][:,1900:2000]
after = tep_microstates[i][ fit ][ labels’][:,2000:2100]
LZbefore_epoch = np.zeros(before.shape[0])
LZafter_epoch = np.zeros(after.shape[0])
for ii in range(before.shape[0]):
LZbefore_epoch[ii] = LZ(before[ii ,:])
LZafter_epoch[ii] = LZ(after[ii ,:])
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LZbefore[i] = LZbefore_epoch.mean()
LZafter[i] = LZafter_epoch.mean()
stat , pval = scipy.stats.wilcoxon(LZbefore, LZafter, alternative=’greater’)

##Data concatenation

#create list of participants in I14ms condition

directory = ’/home/cbdl/Downloads/Datasets /TMS_EEG_2/derivatives/recleaned_tagged/14ms’
pathlist_14ms = list (Path(directory).glob(’«110rmt_eeg.fif "))

names = [re.search(’CON\dx’, str(path)).group() for path in pathlist]

raw_dict = dict(zip (names, pathlist_14ms))

#find other recordings of those participants

conditions = [’4ms’, ’9ms’]

matched = []

for condition in conditions:
directory = f’/home/cbdl/Downloads/Datasets /TMS_EEG_2/derivatives/recleaned_tagged/{ condition}’
pathlist_other = list(Path(directory).glob(’«110rmt_eeg.fif"))
matched += [str(path) for path in pathlist_other if re.search(’CON\d=', str(path)).group() in names]

for name, raw in raw_dict.items ():
matches = [path for path in matched if name in path]
raw_dict[name] = [raw] + matches

#concatenate each participant’s recordings
for name, paths in raw_dict.items ():
raw_list = [mne.io.read_raw_fif (path, preload=True) for path in paths]
if len(raw_list)>1:
print (f’concatenating_the_following_{len(paths)} raw_files’)
for path in paths:
print(path)
concatenated_raw = mne.concatenate_raws (raw_list)
concatenated_raw .save (f’/home/cbdl/Downloads/ Datasets /TMS_EEG_2/derivatives/concatenated/{name}_110rmt_eeg. fif ")
else:
raw_list [0].save (f’/home/cbdl/Downloads/Datasets /TMS_EEG_2/derivatives/concatenated/{name}_110rmt_eeg. fif ")

##ERP analysis

directory = ’/home/cbdl/Downloads/Datasets /TMS_EEG_2/derivatives/concatenated/100rmt’
directory = ’/home/cbdl/Downloads/Datasets /TMS_EEG/ derivatives/recleaned_tagged’

pathlist = list(Path(directory ). glob(’=*.fif "))

montage = mne.channels.make_standard_montage (’standard_1020")

electrodes = ['Fpl’,"Fp2','F3°,°’F4°,°C3’,°C4"]

electrodes = ['Fpl’, 'Fpz', 'Fp2’, 'AF7°, 'AF3’, 'AFz’, 'AF4’, 'Fz’, 'F2°, 'F4’, 'F8', 'F6’]
electrodes = ['C3’, "C4’]

evoked_gr = {}

channels = {}
for sample, pathlist in samples.items ():
evoked = []

for path in pathlist:
raw = mne.io.read_raw_fif(path, preload=True)
new_names = dict ((ch_name, ch_name.rstrip(’.’).upper().replace(’Z’, ’z’).replace(’FP’, "Fp’)) for ch_name in raw.ch_names)
raw.rename_channels (new_names)
raw.set_montage (montage)
raw.interpolate_bads ()
raw. filter (None,2)
events, event_ids = mne.events_from_annotations (raw)
epochs = mne.Epochs(raw, events, [3], baseline=(None,-1), tmin=-2, tmax=2, reject_by_annotation=True, picks=None) #'S 3’
evoked . append(epochs.average ())
evoked_gr[sample] = mne. grand_average (evoked)
evoked_cxt = evoked_gr[sample]. get_data ()
evoked_std_t = np.std(evoked_cxt, axis = 0)
peak_std = np.where(evoked_std_t == np.max(evoked_std_t[:1800]))
evoked_peak_c = evoked_cxt[:,peak_std]
mdiff_c = evoked_peak_c.mean() — evoked_peak_c
groupl = np.where(mdiff_c¢ < np.quantile (mdiff_c, 0.2))[0]
group2 = np.where(mdiff_c¢ > np.quantile (mdiff_c, 0.8))[0]
channels[sample] = group2

#Produces the SPN figure
fig, axs = plt.subplots(nrows=3, ncols=3, sharex="col’, figsize=(16,10), gridspec_kw={’width_ratios’: [3, 1, 1]})
fig.suptitle (*Stimulus_Preceding_Negativity’, y=1.02)
for i, sample in enumerate(samples):
evoked = evoked_gr[sample]
chans = channels[sample]
evoked. plot (pick hans, spatial_colors=True, axes=axs[i,0], show=False)
evoked . plot_topomap (times 0.5, average=1, axes=[axs[i,l], axs[i,2]], show=False)
axs[i,0].axvline (0, alpha=0.5, color=pal[’English_Violet’])
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axs[i,0].set_title (sample, loc="right”)
fig.savefig (f’/home/cbdl/Downloads/Datasets/figures/RMI1_new_final/SPN_3x2.png’, bbox_inches="tight’, dpi=300)

#Produces the channel grouping figure
fig, axs = plt.subplots(nrows=3, ncols=2, sharex="col’, tight_layout=True, gridspec_kw={’width_ratios’: [2, 1]})
all_sample_groups = {}
pathlist = samples[’120%RMT" |
evoked = []
for path in pathlist:
raw = mne.io.read_raw_fif(path, preload=True)
new_names = dict ((ch_name, ch_name.rstrip(’.’).upper().replace(’Z’,
raw.rename_channels (new_names)
raw.set_montage (montage)
raw.interpolate_bads ()
events, event_ids = mne.events_from_annotations (raw)
epochs = mne.Epochs(raw, events, [3], baseline=(None,-1), tmin=-2, tmax=2, preload=True) #'S 3’
epochs.crop(-0.5,0.5)
evoked.append (epochs.average ())
evoked_gr = mne. grand_average (evoked)
evoked_cxt = evoked_gr. get_data()
evoked_std_t = np.std(evoked_cxt, axis = 0)

z’).replace ('FP’, "Fp’)) for ch_name in raw.ch_names)

peak_std = np.where(evoked_std_t == np.max(evoked_std_t))

evoked_peak_c = evoked_cxt[:,peak_std]

mdiff_c = evoked_peak_c.mean() — evoked_peak_c

channel_fraction = 10/mdiff_c.shape[0]

groupl = np.where(mdiff_c¢ < np.quantile (mdiff_c, channel_fraction))[0]
group2 = np.where(mdiff_c¢ > np.quantile (mdiff_c, 1 — channel_fraction))[0]

all_sample_groups[f’{sample}_groupl’] = groupl
all_sample_groups[f’{sample}_group2’] = group2
all_sample_groups[f’{sample} _all’] = None
if sum(groupl) > sum(group2):
all_sample_groups[f’{sample}_groupl’] = group2
all_sample_groups[f’{sample}_group2’] = groupl
montage = mne.channels.make_standard_montage (’standard_1020")
raw = mne.io.read_raw_brainvision ( TMS_EEG/ derivatives /ARTIST/clean/clean_sub -718 _task —tmseegl_eeg.vhdr’)
new_names = dict ((ch_name, ch_name.rstrip(’.’).upper().replace(’Z’, ’z’).replace(’FP’, "Fp’)) for ch_name in raw.ch_names)
raw.rename_channels (new_names)
raw.set_montage (montage)
evoked_gr.plot(axes=axs[0,0], gfp = False, spatial_colors = True, show=False)
raw. plot_sensors (axes=axs[0,1], title="", ch_type="eeg’, show=False)
evoked_gr.plot(axes=axs[1,0], gfp = False, spatial_colors = True, picks=groupl, show=False)
picksl=raw.copy (). pick(all_sample_groups [’ 120%RMT_groupl’])
picksl.plot_sensors (axes=axs[1,1], title="", ch_type="eeg’, show=False)
evoked_gr.plot(axes=axs[2,0], gfp = False, spatial_colors = True, picks=group2, show=False)
picks2=raw.copy (). pick(all_sample_groups [’ 120%RMT_group2’])
picks2.plot_sensors (axes=axs[2,1], title="", ch_type="eeg’, show=False)
axs[0,0].axvline (0, alpha=0.5, color=pal[’English_Violet’])
axs[1,0].axvline (0, alpha=0.5, color=pal[’English_Violet’])
axs[2,0].axvline (0, alpha=0.5, color=pal[’English_Violet’])
fig .show ()

B.2 MATLAB Code used for Preprocessing and Analysis

cfg.EventCode = 'S, 3" % RI28’

cfg. TrialStart = -2000
cfg.TrialEnd = 2000
cfg.Baseline = [’none’]

cfg . TMSEEGrootFolder = ’/home/cbdl/Downloads/Datasets /TMS_EEG/ derivatives /ARTIST’
paths = dir(’/home/cbdl/Downloads/Datasets /TMS_EEG/sub/eeg/+tmseegl_eeg.vhdr’)

Y%ARTIST
for i = l:length(paths)
EEG = pop_loadbv (paths(i).folder, paths(i).name);
EEG = pop_select(EEG, nochannel = {’EMG_Right’,’EMG_Left’,’ECG’, VEOG’ , 'HEOG’ })
EEG = pop_chanedit(EEG, ’lookup’, ’home/cbdl/MATLAB_Add-Ons/Collections /EEGLAB/functions/supportfiles/Standard-10-5-Cap385.sfp’);
cleanedEEG = ARTISTMain (EEG, cfg);
com = pop_writebva(cleanedEEG, strcat(’/home/cbdl/Downloads/Datasets/TMS_EEG_2/derivatives/ARTIST/clean/’, paths(i).name));
end

F%ASR + MARA
eeglab;
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for i = l:length(paths)
YDoload
EEG = pop_loadbv (paths(i).folder, paths(i).name);
UEEG = pop_select (EEG, nochannel = {’EMG Right ', '’EMG Left’, '"ECG’, '"VEOG’, "HEOG’ })
EEG = pop_chanedit (EEG, ’lookup’, ’home/cbdl/MATLAB_Add-Ons/Collections /EEGLAB/functions/supportfiles/Standard -10-5-Cap385.sfp’);
Yoresample
EEG = pop_resample (EEG, 1000)
Ybandpass filter , electrical noise removal
EEG_f = pop_ecegfiltnew (EEG,1,0)
EEG_f = pop_eegfiltnew (EEG_f,0,100)

EEG_f = pop_cleanline (EEG_f, ’SignalType’, ’Channels’, ’'LineFrequencies’, "[60]")

PASR

EEG_asr = clean_artifacts (EEG_f, ’Highpass’, “off’, ’'LineNoiseCritereion’, ’off”)

%EEG_asr = clean_artifacts (EEG_f, 'BurstRejection’, ’on’, 'Highpass ', ’off’, 'LineNoiseCritereion ', ’'off’)
P%ICA

[EEG_asr.icaweights , EEG_asr.icasphere] = runica (EEG_asr.data)

[ALLEEG, EEG_asr, CURRENTSET] = eeg_store (ALLEEG, EEG_asr)

[~,EEG_ica,~] = processMARA (ALLEEG, EEG_asr, CURRENTSET, [0,0,0,0,0])

EEG_ica = pop_subcomp (EEG_ica, [], 0, 0)

%interpolate , rereference

EEG_int = eeg_interp (EEG_ica, EEG.chanlocs)

EEG_clean = pop_reref (EEG_int, [])

Yoexport

pop_writebva (EEG_clean, strcat(’/home/cbdl/Downloads/Datasets/TMS_EEG/derivatives/clean_rest_lk_resample/’, paths(i).name));
end

%load data (rest)
eeglab;
for i = l:length(paths)
EEG = pop_loadbv (paths(i).folder, paths(i).name);
EEG = pop_chanedit(EEG, ’lookup’, ’home/cbdl/MATLAB_Add-Ons/Collections /EEGLAB/functions/supportfiles/Standard-10-5-Cap385.sfp’);
JDEEG = pop_select (EEG, nochannel = {’EMG Right ', 'EMG Left ', ECG’, 'VEOG', "HEOG’})
WEEG = pop_eegfiltnew (EEG,8,12)
[ALLEEG, EEG, ~] = eeg_store (ALLEEG, EEG);
end

%load data (ERP)
eeglab;
for i = l:length(paths)

EEG = pop_loadset(paths(i).name, paths(i).folder);

EEG = pop_chanedit (EEG, ’lookup’, ’home/cbdl/MATLAB_Add-Ons/Collections /EEGLAB/functions/supportfiles/Standard -10-5-Cap385.sfp’);
YEEG = pop_select (EEG, nochannel = {’EMG Right ', '’EMG Left ', 'ECG’, '"VEOG', "HEOG’ })

YEEG = pop_eegfiltnew (EEG,8,12)

[ALLEEG, EEG, ~] = eeg_store (ALLEEG, EEG);
end

%gfp peak aggregation (individual)

for i = I1:length (ALLEEG)
EEG = eeg_retrieve (ALLEEG, i)
EEG_gfp = pop_micro_selectdata (EEG, ALLEEG, ’datatype’, ’spontaneous’ ,...
Tavgref’, 0, ...
‘normalise’, 0,

’MinPeakDist’, 50,

*Npeaks’, 2000,

*GFPthresh’, 3,

*dataset_idx ', []);

[ALLEEG, EEG, CURRENTSET] = eeg_store (ALLEEG, EEG_gfp, i)
end

YDTAAHC clustering (individual)
for i = 1:length (ALLEEG)

EEG = eeg_retrieve (ALLEEG, i)

EEG_taahc = pop_micro_segment (EEG, ...

*algorithm’, ’taahc’,

’normalise’, 0,

"polarity ’, 0);

[ALLEEG, EEG, CURRENTSET] = eeg_store (ALLEEG, EEG_taahc, i)
end

Jomicrostate selection
for i = Il:length (ALLEEG)
EEG = eeg_retrieve (ALLEEG, i)
pop_micro_plottopo (EEG)
EEG_m = pop_micro_selectNmicro (EEG);
[ALLEEG,~ ,~] = eeg_store (ALLEEG,EEG m, i)
end

YDobackfit and stats
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for i = Il:length (ALLEEG)

eeg_retrieve (ALLEEG,i);

pop_micro_fit (EEG,

polarity’ ,0);

EEG = pop_micro_smooth (EEG,
"minTime’ ,20,
’smooth_type’, ’'reject _segments’,
*label_type’,’backfit’,
‘polarity ”,0);

EEG = pop_micro_stats (EEG,
*label_type’, backfit’,
‘polarity ”,0);

[ALLEEG,~ ,~] = eeg_store (ALLEEG,EEG, i);

g

end

JDobackfit microstates to ERP
for i = I1:length (ALLEEG)
EEG = eeg_retrieve (ALLEEG,i);
setname = split (ALLEEG(i).setname, '/’)
subject = split(setname(end), '_")
name = char(strcat(’/home/cbdl/Downloads/Datasets /TMS_EEG/ derivatives/variables/resting_microstates/alpha/’ ,...
regexp (ALLEEG(1i ). setname , “\wx[0-9]°, ’match’) ,...
‘_ms’))
ms = load (name)
EEG. microstate . prototypes = ms. prototypes
EEG = pop_micro_fit (EEG,
‘polarity ”,0);
EEG = pop_micro_smooth (EEG,
*minTime” ,20,
’smooth_type’, ’'reject _segments’,
’label_type’, backfit’,
"polarity *,0);
EEG = pop_micro_stats (EEG,
>label_type’, backfit’,
*polarity”,0);
[ALLEEG,~ ,~] = eeg_store (ALLEEG,EEG,1i);
end
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